Simplifying Model Transformation Chains by Rule Composition

  • Mark Asztalos
  • Eugene Syriani
  • Manuel Wimmer
  • Marouane Kessentini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6627)

Abstract

Many model transformation problems require different intermediate transformation steps, e.g., when platform-specific models (PSM) are generated from platform-independent models (PIM). This requires the presence of several intermediate meta-models between those of the PIM and the PSM. Thus, for achieving the final PSM, a chain of transformation is needed. The solution proposed in this paper is to investigate whether it is possible to generate a single transformation from a chain of transformations, solely involving the initial PIM and final PSM meta-models. The presented work focuses on the composition of algebraic graph transformations at the rule level. Moreover, we discuss about the translation of transformations implemented in dedicated model-to-model transformation languages to algebraic graph transformation specifications. We apply the automatic procedure for composing rules in the context of the evolution of Enterprise Java Beans (EJB), transforming UML models into EJB 2.0 and then to EJB 3.0 models. The composable transformations are specified in the Atlas Transformation Language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing mapping composition. VLDB J. 17(2), 333–353 (2008)CrossRefGoogle Scholar
  2. 2.
    Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: Int. Conf. on Management of Data (2007)Google Scholar
  3. 3.
    Bisztray, D., Heckel, R., Ehrig, H.: Compositionality of model transformations. In: ENTCS, vol. 236, pp. 5–19 (2009)Google Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. In: EATCS, Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Fabro, M.D.D., Albert, P., Bézivin, J., Jouault, F.: Achieving rule interoperability using chains of model transformations. In: Int. Conf. on Theory and Practice of Model Transformations (2009)Google Scholar
  6. 6.
    Jouault, F., Kurtev, I.: Transforming models with ATL. In: Model Transformation in Practice Workshop (2006)Google Scholar
  7. 7.
    Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transformation modeling. In: MoDELS 2009 Workshops (2010)Google Scholar
  8. 8.
    Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: GraMoT 2005, Tallinn (Estonia). ENTCS, vol. 152, pp. 125–142 (March 2006)Google Scholar
  9. 9.
    Object Management Group. Meta Object Facility 2.0 Query/View/Transformation Specification (April 2008)Google Scholar
  10. 10.
    Oldevik, J.: Transformation composition modelling framework. In: Int. Conf. on Distributed Applications and Interoperable Systems (2005)Google Scholar
  11. 11.
    Pons, C., Giandini, R., Perez, G., Baum, G.: An algebraic approach for composing model transformations in QVT. In: Int. Workshop on Software Language Engineering (2008)Google Scholar
  12. 12.
    Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.: Orchestrating ATL model transformations. In: MtATL Workshop (2009)Google Scholar
  13. 13.
    Vanhooff, B., Baelen, S.V., Hovsepyan, A., Joosen, W., Berbers, Y.: Towards a transformation chain modeling language. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 39–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Wagelaar, D.: Composition techniques for rule-based model transformation languages. In: Int. Conf. on Theory and Practice of Model Transformations (2008)Google Scholar
  15. 15.
    Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve. In: Int. Conf. on Very Large Data Bases (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark Asztalos
    • 1
  • Eugene Syriani
    • 2
  • Manuel Wimmer
    • 3
  • Marouane Kessentini
    • 4
  1. 1.Budapest University of Technology and EconomicsBudapestHungary
  2. 2.McGill UniversityMontréalCanada
  3. 3.Vienna University of TechnologyViennaAustria
  4. 4.DIROUniversité de MontréalMontréalCanada

Personalised recommendations