Petunia

  • M. Ganga
  • S. Jayalakshmi
  • V. Jegadeeswari
  • K. Padmadevi
  • M. Jawaharlal
Chapter

Abstract

Petunia is considered to be the first cultivated bedding plant and has remained as a commercially important ornamental crop since the early days of horticulture and is one of the favorite genera for developing new varieties. Apart from its significance as an ornamental crop, petunia has proved to be one of the most excellent model crops for studies on gene regulation and genome structure, since the system combines innumerable and excellent technical features with a broad range of research possibilities.

This chapter reviews research reports on petunia under various aspects including origin, distribution, genetic diversity, morphology, anatomy, taxonomy, genomic resources, ploidy status, use in genetic and cytological studies, genetics and biochemistry of flower pigmentation, gene linkage and mapping, male sterility and self-incompatibility, intergeneric, interspecific and somatic hybridization, and genetic transformation.

References

  1. Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338PubMedGoogle Scholar
  2. Ai Y, Kron E, Kao-T-H (1991) S-alleles are retained and expressed in a self-incompatible cultivar of Petunia hybrida. Molec Gen Genet 230:353--358PubMedGoogle Scholar
  3. Alanen A, Bongard T, Einarsson E, Hansen H, Hedlund L, Jansson K, Josefsson M, Philipp M, Sandlund OT, Svart AE, Svart HE, Weidema I (2004) Introduced species in the Nordic countries (Denmark) under Nordic Council of Ministers (NMR), subgroup Natur-og FriluftslivsgruppenGoogle Scholar
  4. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055PubMedGoogle Scholar
  5. Aline PL, Mader G, Valéria CM, João RS, Sandro LB, Francisco MS, Loreta B. Freitas (2006) Diversity and natural hybridization in a highly endemic species of Petunia (Solanaceae): a molecular and ecological analysis. Mole Ecol 15:(14):4487–4497Google Scholar
  6. Ando T (1996) Distribution of Petunia axillaris (Solanaceae) and its new subspecies in Argentina and Bolivia. Acta Phytotaxon Geobot 44:19–30Google Scholar
  7. Ando T, Hashimoto G (1993) Two new species of Petunia (Solanaceae) from southern Brazil. Bot J Linn Soc 111:265–280Google Scholar
  8. Ando T, Hashimoto G (1994) A new Brazilian species of Petunia (Solanaceae) from the Serra da Mantiqueira. Brittonia 46:340–343Google Scholar
  9. Ando T, Hashimoto G (1995) Petunia guarapuavensis (Solanaceae): a new species from Planalto of Paraná and Santa Catarina, Brazil. Brittonia 47:328–334Google Scholar
  10. Ando T, Hashimoto G (1996) A new Brazilian species of Petunia (Solanaceae) from interior Santa Catarina and Rio Grande do Sul, Brazil. Brittonia 48:217–223Google Scholar
  11. Ando T, Hashimoto G (1998) Two new species of Petunia (Solanaceae) from southern Rio Grande do Sul, Brazil. Brittonia 50:483–492Google Scholar
  12. Ando T, Nomura M, Tsukahara J, Watanabe H, Kokubun H, Tsukamoto T (2001) Reproductive isolation in a native population of Petunia sensu Jussieu (Solanaceae). Ann Bot 88:403–413Google Scholar
  13. Ando T, Kokubun H, Watanabe H, Tanaka N, Yukawa T, Hashimoto G, Marchesi E, Suárez E, Basualdo IL (2005) Phylogenetic analysis of Petunia sensu Jussieu (Solanaceae) using chloroplast DNA RFLP. Ann Bot 96(2):289–297PubMedGoogle Scholar
  14. Ando T, Ueda Y, Hashimoto G (1992) Historical survey and present status of systematics in the genus Petunia Jussieu (Solanaceae). The Technical Bulletin of Faculty of Horticulture, Chiba University 45:17–26Google Scholar
  15. Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582PubMedGoogle Scholar
  16. Angenent GC, Stuurman J, Snowden KC, Koes R (2005) Use of Petunia to unravel plant meristem functioning. Trends Plant Sci 10(5):243–250PubMedGoogle Scholar
  17. Anonymous (1918) Petunia integrifloia. Curtis Bot Mag 114Google Scholar
  18. Auld BA, Medd RW (1992) Weeds, an illustrated botanical guide to the weeds of Australia. Inkata, Melbourne, Australia. ISBN 0909605378Google Scholar
  19. Ausubel FM, Bahnsen K, Hanson M, Mitchell A, Smith HJ (1980) Cell and tissue culture of haploid and diploid Petunia Mitchell. Plant Mol Biol Newsl 1:26–32Google Scholar
  20. Bai LJ, Ye CJ, Lu JY, Yang DE, Xue H, Pan Y, Cao PX, Wang B, Liu M (2009) ipt gene transformation in Petunia by an Agrobacterium mediated method. J Immunoassay Immunochem 30(2):224–231PubMedGoogle Scholar
  21. Bailey LH (1896) Evolution of the Petunia. In: The survival of the unlike. MacMillan, London, UK, pp 465–472Google Scholar
  22. Bailey LH (1910) Cyclopedia of American horticulture, vol 3: N-Q. MacMillan, London, UK, 2016 pGoogle Scholar
  23. Barendse GWM, Van der Weerden G (1996) Catalogue of the Solanaceae germplasm collection. Botanical Garden of Nijmegen, Nijmegen, the Netherlands, 102 pGoogle Scholar
  24. Barendse GWM, Van der Weerden G (1997) The Solanaceae germplasm bank at the Botanical Garden of Nijmegen. Bot Gard Conserv News 2:31–33Google Scholar
  25. Beale GH, Price JR, Sturgess VC (1941) A survey of anthocyanins. VII. The natural selection of flower colour. Proc R Soc Lond Biol Sci Ser 130(113):126Google Scholar
  26. Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892PubMedGoogle Scholar
  27. Beverly AU, Denise MT, Kenichi S, Richard JD, Holly ML, Andrew JS, Charles AS, Eric AS, Harry JK, David GC (2005) Ethylene-regulated floral volatile synthesis in Petunia corollas. Plant Physiol 138:255–266Google Scholar
  28. Bianchi F (1960) Genetisch-chemisch bloemkleuronderzoek bij Petunia. Genen Phaenen 5:33–45Google Scholar
  29. Bianchi F (1963) Transmission of male sterility in Petunia by grafting. Genen Phaenen 8:36–43Google Scholar
  30. Bianchi F, Dommergues P (1979) Petunia genetics. Petunia as a model for plant research: genetics and mutagenesis. Ann Amelior Plant 29:607–610Google Scholar
  31. Bianchi F, de Boer R, Pompe AJ (1974) An investigation into spontaneous reversions in a dwarf mutant of Petunia hybrida in connection with the interpretation of the results of transformation experiments. Acta Bot Neerl 23:691–700Google Scholar
  32. Bianchi F, Cornelissen PTJ, Gerats AGM, Hogervorst JMV (1978) Regulation of gene action in Petunia hybrida: Instable alleles of a gene for flower colour. Theor Appl Genet 53(157):167Google Scholar
  33. Birkofer L, Kaiser C (1962) Neue Flavonglycoside aqs Petunia hybrida. Z Naturforsch 17:359–368Google Scholar
  34. Birkofer L, Kaiser C (1963) Methode zur Bestimmung des Acyl- und Zuckerrestes in Anthocyanidin3-(acyl)-disacchariden. Z Naturforsch 18b:337Google Scholar
  35. Birkofer L, Kaiser C, Koch W, Lange HW (1963) Nicht acylierte Anthocyane in Blüten von Petunia hybrida. Z Naturforsch 18b:367–370Google Scholar
  36. Birkofer L, Kaiser CH, Donike M, Koch W (1965) Acylierte Anthocyane III. Konstitution von Acylanthocyanen. Z Naturforsch 20b:424–428Google Scholar
  37. Blakeslee AF, Avery AG (1937) Methods for inducing doubling of chromosome number. J Heredity 28:393--411Google Scholar
  38. Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135(4):1993–2011PubMedGoogle Scholar
  39. Bogdanove AJ, Martin GB (2000) AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci USA 97:8836–8840PubMedGoogle Scholar
  40. Brewbaker JL, Natarajan AT (1960) Centric fragments and pollen-part mutation of incompatibility alleles in Petunia. Genetics 45(699):704Google Scholar
  41. Broothaerts WJ, van Laere A, Witters R, Praeux G, Decock B, van Damme J, Vendrig JC (1989) Purification and N-terminal sequencing of style glycoproteins associated with a self-incompatibility in Petunia hybrid. Plant Molec Biol 14:93--102Google Scholar
  42. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340PubMedGoogle Scholar
  43. Brummit RK (1989) Report of the committee for Spermatophyta 36. Taxon 38:301Google Scholar
  44. Cerny TA, Caetano-Anollés G, Trigiano RN, Starman TW (1996) Molecular phylogeny and DNA amplification fingerprinting of Petunia taxa. Theor Appl Genet 92(8):1009–1016Google Scholar
  45. Chenault R, Cornu A, Dommergues P (1968) Genetical analysis of flower pigmentation in Petunia. Applied Atomic Energy Agriculture Annual Report 1967, p 51Google Scholar
  46. China Pullaiah P, Padmaja V (1992) Transmission of telotrisomy in Petunia. Proc Conf Cytol Genet 3:64–70Google Scholar
  47. Clark E, Schnabelrauch L, Hanson MR, Sink KC (1986) Differential fate of plastid and mitochondrial genomes in petunia somatic hybrids. Theor Appl Genet 72:748–755Google Scholar
  48. Clark KR, Okuley JJ, Collins PD, Sims TL (1990) Sequence variability and developmental expression of S-alleles in self-incompatible and pseudo-self-compatible petunia. Plant Cell 2:815–826PubMedGoogle Scholar
  49. Clark DG, Dervinis G, Barrett GE (2004) Drought-induced leaf senescence and horticultural performance of Psag12-IPT Petunias. J Am Soc Hortic Sci 129:93–99Google Scholar
  50. Clevenger DJ, Barrett JE, Klee HJ, Clark DG (2004) Factors affecting seed production in transgenic ethylene-insensitive petunias. J Am Soc Hortic Sci 129:401–406Google Scholar
  51. Cocking EC (1981) Opportunities from the use of protoplasts. Phil Trans R Soc Lond B 292:557–568Google Scholar
  52. Cornu A (1970) Recherches sur l’induction et l’utilisation de mutations somatiques chez le Petunia hybrida. Thesis, Dijon University, FranceGoogle Scholar
  53. Cornu A (1977) Systèmes instables induits chez le Petunia. Mutat Res 42(235):248Google Scholar
  54. Cornu A, Maizonnier D (1979) Enhanced non-disjunction and recombination as consequences of induced deficiencies in Petunia hybrida. Mutat Res 61:57–63Google Scholar
  55. Cornu A, Paynot M, Touvin H (1974) Pelargonidin in the flowers of a mutant of Petunia hybrida. Phytochemistry 13:2022–2025Google Scholar
  56. Dale EE (1942) Inheritance of two factors affecting anthocyanin distribution in flowers of Petunia. Pap Mich Acad Sci Arts Lett 27:3–6Google Scholar
  57. Dana MN, Ascher PD (1986) Sexually localized expression of pseudo-self compatibility (PSC) in Petunia X hybrida Hort. Theor Appl Genet 71(4):578–584Google Scholar
  58. de Vlaming P, Kho KFF (1976) 4,2′,4′,6′-Tetrahydroxychalcone in pollen of Petunia hybrida. Phytochemistry 15:348–349Google Scholar
  59. Dermen H (1931) Polyploidy in Petunia. Am J Bot 18:250–261Google Scholar
  60. Dervinis C, Calrk DG, Barrett JE, Nell TA (1998) Prevention of leaf senescence in petunia via genetic transformation with SAG-IPT. Proc FL Hortic Soc 111:12–15Google Scholar
  61. Darlington, CD (1939) Misdivision and the genetics of the centromere. J Genet 37:341–364.Google Scholar
  62. Dommergues P, Cornu A (1974) Efficacite des traitements mutagenes sur zygotes. In: Polyploidy and induced mutations in plant breeding, IAEA-PL/17. Austria, Viena, pp 115–126Google Scholar
  63. Dommergues P, Cornu A, Paynot M (1974) Etude du materiel végétal. Le Petunia. Rapport d’Activite v’ 1968 a 1972. Lab Mutagenèse Exp Stat d’Amel Plantes Dijon A4–A18Google Scholar
  64. Don D (1833) Nierembergia phoenicia. In: Sweet (ed) Br Fl Gard II 2:193Google Scholar
  65. Dowd PE, McCubbin AG, Wang X, Verica JA, Tsukamoto T, Ando T, Kao TH (2000) Use of Petunia as a model for the study of solanaceous type self-incompatibility. Ann Bot Suppl A 85:87–93Google Scholar
  66. Duvick ND (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13(1):56Google Scholar
  67. Edwardson JR, Corbett MK (1961) Asexual transmission of cytoplasmic male sterility. Proc Natl Acad Sci USA 47:390–396PubMedGoogle Scholar
  68. El Gamassy AM, Hussein MF, Bishara AL, Sallam SH, Ali AS (1972) Studies on the hybrid Petunia. Agric Res Rev (Cairo) 50:167–176Google Scholar
  69. Engvild KC (1973) Triploid petunias from anther culture. Hereditas 72:331--332Google Scholar
  70. Ferguson MC (1934) A cytological and a genetical study of Petunia. V. The inheritance of colour in pollen. Genetics 19:394–411PubMedGoogle Scholar
  71. Ferguson MC, Collidge EB (1932) A cytological and a genetical study of Petunia IV. Pollen grains and the method of studying them. Am J Bot 19:644–659Google Scholar
  72. Ferguson MC, Ottley AM (1932) Studies on Petunia III. A redescription and additional discussion of certain species of Petunia. Am J Bot 19:385–407Google Scholar
  73. Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465PubMedGoogle Scholar
  74. Flaschenriem DR, Ascher PD (1979) S allele discrimination in styles of Petunia hybrida bearing stylar conditioned pseudo-self-compatibility. Theor Appl Genet 55(23):28Google Scholar
  75. Frankel R (1956) Graft-induced transmission to progeny of cytoplasmic male sterility in Petunia. Science 124:684–685PubMedGoogle Scholar
  76. Frankel R (1962) Further evidence on graft-induced transmission to progeny of cytoplasmic male sterility in Petunia. Genetics 47:641–646PubMedGoogle Scholar
  77. Frankel R (1971) Genetical evidence on alternative maternal and Mendelian hereditary elements in Petunia hybrida. Heredity 26(107):119Google Scholar
  78. Fray RG, Grierson D (1993) Molecular genetics of tomato fruit ripening. Trends Genet 9:438–443PubMedGoogle Scholar
  79. Fries RE (1911) Die Arten der Gattung Petunia. Kungliga Svenska Vetenskapsakademiens Handlingar 46:1–72Google Scholar
  80. Galbraith DW, Mauch TJ, Shields BA (1981) Analysis of the initial stages of plant development using 33258 Hoechst: reactivation of the cell cycle. Physiol Plant 51:380--386Google Scholar
  81. Garabagi F, Strommer J (2000) Green fluorescent protein as an all-purpose reporter in Petunia. Plant Mol Biol Rep 18:219–226Google Scholar
  82. Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102PubMedGoogle Scholar
  83. Gerard M, van der Weerden (1999) EGGPLANT INFO Information bulletin for research on eggplant and relatives. Number 2, August, University of Nijmegen & Peter J.W. van Duin, Rijk Zwaan Seeds edsGoogle Scholar
  84. Gerats T, Vandenbussche M (2005) A model system for comparative research: Petunia. Trends Plant Sci 10(5):251–256. doi:10.1016/j.tplants.2005.03.005 PubMedGoogle Scholar
  85. Gerats AGM, Huits H, Vrijlandt E, Marana C, Souer E, Beld M (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of Petunia. Plant Cell 2(11):1121–1128PubMedGoogle Scholar
  86. Gerats AGM, Souer E, Kroon J, McLean M, Farcy E et al (1993) Petunia hybrida. In: O'Brien S (ed) Genetic maps: locus maps of complex genomes, vol 6. Cold Spring Harbor Laboratory, New York, USA, pp 6.13–6.23Google Scholar
  87. Gerstel DV (1980) Cytoplasmic male sterility in Nicotiana (a review). Tech Bull No 263:1–31Google Scholar
  88. Gilissen LJW (1978) Post X-irradiation effects on petunia pollen germinating in vitro and in vivo. Environ Exp Bot 18:81–86Google Scholar
  89. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170–S180PubMedGoogle Scholar
  90. Glimelius K, Bonnett HT (2004) Nicotiana cybrids with Petunia chloroplasts. Theor Appl Genet 72(6):794–798Google Scholar
  91. Gray J, Picton S, Shabbeer J, Schuch W, Grierson D (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol 19:69–87PubMedGoogle Scholar
  92. Griesbach RJ (1993) Characterization of flavanoids from Petunia hybrida flowers expressing the A1 gene of Zea mays. HortScience 28:659–660Google Scholar
  93. Griesbach RJ, Beck RM, Stehmann JR (2000) Molecular heterogeneity of the chalcone synthase intron in Petunia. HortScience 35(7):1347–1349Google Scholar
  94. Gyorffy B (1938) Durch Kolchizinbehandlung erzeugte polyploide Pflanzen. Naurwissenschaften 26:547Google Scholar
  95. Hahlbrock K, Griesebach H (1975) Biosynthesis of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman and Hall, London, UK, pp 866–915Google Scholar
  96. Hahlbrock K, Griesebach H (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30(105–1):30Google Scholar
  97. Hamilton AJ, Fray RG, Grierson D (1995) Sense and antisense inactivation of fruit ripening genes in tomato. Curr Top Microbiol Immunol 197:77–89PubMedGoogle Scholar
  98. Hanson M (1980) Petunia as a model system for model system for molecular biologists. Plant Mol Biol Newsl 1:4Google Scholar
  99. Hanson MR (1984) Anther and pollen culture. In: KC Sink (ed.) Petunia, Springer-Verlag, Berlin. pp 139--150Google Scholar
  100. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169PubMedGoogle Scholar
  101. Heseman CU (1964) Cytogenetische Untersuchungen an Trisomen von Petunia hybrida. Z Pflanzenzuecht 51:1–11Google Scholar
  102. Hess D (1969) Versuche zur transformation an hdheren pflanzen: Induktion und konstante weitergabe der anthocyansynthese bei Petunia hybrida. Z Pflanzenphysiol 60(348):358Google Scholar
  103. Hess D (1970) Versuche zur transformation an hdheren Pflanzen: Genetische charakterisierung ci- niger mutmal3lich transformierter Pflanzen. Z Pflanzenphysiol 63:31–43Google Scholar
  104. Heywood V (1989) Patterns, Extents, and Modes of Invasions by Terrestrial Plants. In: J. Drake et al. (eds.) Biological Invasions: A Global Perspective, Wiley, NY, pp 31--60Google Scholar
  105. Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell_Olivo A., Arnold M, Kuhlemeier C (2007) Single gene-mediated shift in pollinator attraction in petunia. Plant Cell 19:779–790PubMedGoogle Scholar
  106. Hodgkin T (1991) The core collection concept. In: Th.J.L. van Hintum, L. Frese, P.M. Perret, (eds.) Ins IBGR Crop Networks, Searching for New Concepts for Collaborative Genetic Resources Management. pp 43–48Google Scholar
  107. Hoffmann HKH (1869) Untersuchungen zur Bestimmung des Wertes von spezies and Varietat. Giessen, Ricker, S. 135Google Scholar
  108. Holm LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. Wiley, NewYork, USAGoogle Scholar
  109. Hooker WJ (1831) Salpiglossis intergrifolia Entire- leaved Salpiglossis. Curtis Bot Mag 5Google Scholar
  110. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231Google Scholar
  111. Hosking J, NSW Department of Agriculture, Weed Database 30 April 2003Google Scholar
  112. Huitts HSM, Gerats AGM, Kreike MM, Mol JNM, Koes R (1994) Genetic control of dihydroflavanol 4-reductase gene expression in Petunia hybrida. Plant J 6:295–310Google Scholar
  113. Hussein HAS, Misiha A (1978) Diallel analysis for flower colour and variegation in Petunia hybrida Hort. Egypt Genet Cytol 7(297):312Google Scholar
  114. Izhar S (1973) Cell budding and fission in microspores of Petunia. Nature 244:35–37Google Scholar
  115. Izhar S, Frankel R (1976) Cytoplasmic male sterility in Petunia. I. Comparative study of different plasmatype sources. J Hered 67:43–46Google Scholar
  116. Izhar S, Power JB (1979) Somatic hybridization in Petunia: a male sterile cytoplasmic hybrid. Plant Sci Lett 14:49–55Google Scholar
  117. Izhar S, Tabib Y (1980) Somatic hybridization in Petunia II. Heteroplasmic state in somatic hybrids followed by cytoplasmic male sterile and male fertile lines. Theor Appl Genet 57:214–245Google Scholar
  118. Izhar S, Zelcher A (1980) Somatic hybridization in Petunia. Theor Appl Genet 57:241–245Google Scholar
  119. Izhar S, Zelcher A (1984) Cell, tissue and organ culture in Petunia. In: K.C. Sink (ed) Springer-Verlag, Berlin. pp 111–122Google Scholar
  120. Johnson ET, Hankuil Y, Byongchul S, Oh BJ, Cheong H, Choi G (1999) Cymbidium hybrida dihydroflavanol 4 reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonin-type anthocyanins. Plant J 19:81–85PubMedGoogle Scholar
  121. Kabbaj A, Zeboudj F, Peltier D, Tagmount A, Tersac M, Dulieu H, Berbillé A (1995) Variation and phylogeny of the ribosomal DNA unit types and 5 S DNA in Petunia Jussieu. Genet Resour Crop Evol 42:311–325Google Scholar
  122. Kamo KK, Griesbach RJ (1989) Determination of ploidy level in ‘Mitchell’ Petunia. Plant Sci 65:119–124Google Scholar
  123. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14(10):2353–2367PubMedGoogle Scholar
  124. Kashikar SG, Khalatkar AS (1981) Breeding for flower colour in Petunia hybrida Hort. Acta Hortic 111:35–40Google Scholar
  125. Kazuo H (1952) Studies on the mechanism of flower colour formation. I. Variation and heredity of flower colour in Petunia hybrida. Jpn J Breed 1:241–246Google Scholar
  126. Khush GS (1973) Cytogenetics of aneuploids. Academic, New York, USAGoogle Scholar
  127. Knapp S, Stafford P, Persson V (2000) Pollen morphology in the Anthocercideae. Kurtziana 28(1):7--18Google Scholar
  128. Koes RE, Spelt CE, Mol JNM, Gerats AGM (1987) The chalcone synthase multigene family of Petunia hybrida (V30): sequence homology, chromosomal localization and evolutionary aspects. Plant Mol Biol 10:375–385Google Scholar
  129. Koes R, Souer E, Van Houwelingen A, Mur L, Spelt C et al (1995) Targeted gene inactivation in Petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci USA 92:8149–8153PubMedGoogle Scholar
  130. Kokubun H, Ando T, Kohyama S, Watanabe H, Tsukamoto T, Marchesi E (1997) Distribution of intermediate forms of Petunia axillaris subsp. axillaris and subsp. parodii (Solanaceae) in Uruguay as revealed by discriminant analysis. Acta Phytotaxon Geobot 48:173–185Google Scholar
  131. Kokubun HM, Nakano T, Tsukamoto H, Watanabe G, Hashimoto E, Marchesi L, Bullrich IL, BasualdoT.-h, Kao, Ando T (2006) Distribution of self-compatible and self-incompatible populations of Petunia axillaris (Solanaceae) outside Uruguay, Journal of Plant Research 119:419–430PubMedGoogle Scholar
  132. Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347PubMedGoogle Scholar
  133. Kostoff D (1930) Eine tetraploide Petunia. Z Zellforsch Mikr Anat 10:783–786Google Scholar
  134. Kulcheski F, Muschner V, Lorenz-Lemke A, Stehmann J, Bonatto S, Salzano F, Freitas L (2006) Molecular phylogenetic analysis of Petunia. Genetica 126(1–2):3–14PubMedGoogle Scholar
  135. La Llave CP, Lexarza JM (1825) Calibrachoa. NovVeg Desc 2:3Google Scholar
  136. Lamarck JB (1793) Tableau encyclopedique et methodique Botanique 2:7Google Scholar
  137. Lee CH, Peak KY, Hwang JK (1994) Production and characterization of putative intertribal somatic hybrids between Salpiglossis and Petunia. J Kor Soc Hortic Sci 35:360–369Google Scholar
  138. Levan A (1938) Tetraploidy and octoploidy induced by colchicines in diploid Petunia. Hereditas 25:109–131Google Scholar
  139. Li L, Li C, Howe GA (2001) Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol 127:1414–1417PubMedGoogle Scholar
  140. Lindley J (1833) Petunia violacea. Bot Rev, p 1626Google Scholar
  141. Linskens HF, Straub J (1978) A mutant collection of Petunia hybrida. Incompatibility Newslett 10:123–131Google Scholar
  142. Lotsy JP (1912) La theorie du croisement. Arch neerl Sci exactes et naturelles. Serie III b. 2:178–238Google Scholar
  143. Loudon JW (1840) Ladies flower garden of ornamental annuals. Lundberg, London, UK, pp 254–255Google Scholar
  144. Maack R (1968) As zonas das paisagens naturais. In: Maack R (ed) Geografia fisica do estado do Paraná. Banco de Desenvolvimento do Paraná, Curitiba, pp 85–88Google Scholar
  145. Maizonnier D (1971) Utilization des plantes haploids pour Panalyse du caryogram de Petunia hybrida Hort. Ann Amelior Plant 21:257–264Google Scholar
  146. Maizonnier D (1973) Further results on haploid and dihaploid plants of Petunia. Haploid Info Serv 8:4–7Google Scholar
  147. Maizonnier D (1974) Comportement méiotique et déscendances des plantes haploides de Petunia. In: Polyploidy and induced mutations in plant breeding. International Atomic Energy Agency, Viena, Austria, pp 205–219Google Scholar
  148. Maizonnier D (1976a) Production de tétraploides et de trisomiques naturels chez le Petunia. Ann Amelior Plant 26:305–318Google Scholar
  149. Maizonnier D (1976b) Etude cytogénétique de variations chromosomiques naturelles ou induites chez Petunia hybrida Hort. These Doe Sci Nat Dijon, FranceGoogle Scholar
  150. Maizonnier D, Cornu A (1971) A telocentric translocation responsible for variegation in Petunia. Genetica 42:422–436Google Scholar
  151. Maizonnier D, Cornu A (1979) Preuve cytogénétique de la production de chromosomes lineaires remai nies a partir d’un chromosome annulaire chez Petunia hybrida Hort. Caryologia 32:393–412Google Scholar
  152. Maizonnier D, Moessner A (1979) Localization of the linkage groups on the seven chromosomes of the Petunia hybrida genome. Genetica 51(143):148Google Scholar
  153. Malinowski E (1914) Mieszance petunii (Les hybrids du Petunia.) CR Seances Soc Sci Varsovie 7:43--54Google Scholar
  154. Malinowski E (1935) Studies of unstable characters in Petunia I. The extreme flower types of the instable race with mosaic color patterns. Genetics 20:342–356PubMedGoogle Scholar
  155. Marthaler H (1936) Morphologie der chromosome des zellkernes von Petunia. Z Ind Abst – u Verebungsl 72:238–266Google Scholar
  156. Malinowski E, Sachs M (1916) Die Vererbung einiger Blutenfarben und Blumengestalten bei Petunia. C R Soc Sci Varsovie 9:865--894Google Scholar
  157. Marzocca A (1994) Guia Descriptiva De Malezas Del Cono Sur. Instituto Nacional De Tecnologia Agropecuaria (Other weeds frequent in Argentina for descriptions) see Marzocca A (1993) Manual de Malezas 4th ednGoogle Scholar
  158. Mather K (1943) Specific differences in Petunia I. Incompatibility. J Genet 45:215--235Google Scholar
  159. Mather K, Edwardes PMJ (1943) Specific differences in Petunia. III. Flower color and genetic isolation. J Genet 45:243–260Google Scholar
  160. Matsuda H (1934) Cytological studies of giant petunia. Res Bull Gifu Imp Coll Agric 32:1–18Google Scholar
  161. Matsuda H (1927) On the origin of big pollen grains with an abnormal number of chromosomes. La Cellule 38:215--239Google Scholar
  162. Matsuda H (1935) Cytological studies of genus Petunia. Cytologia 6(502):522Google Scholar
  163. Metzlaff M, O’Dell M, Cluster PD, and Flavell RB (1997) RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88:845--854PubMedGoogle Scholar
  164. McCubbin AG, Wang X, Kao T-H (2000) Identification of self-incompatibility (S-) locus linked to pollen cDNA markers in Petunia inflata. Genome 43:619–627PubMedGoogle Scholar
  165. Meyer C (1964) Die Genetik des B-Ringes bei Petunia-Anthocyanen. Z Vererb 95(171):183Google Scholar
  166. Meyer P (2001) Chromatin remodeling. Curr Opin Plant Biol 4:457–462PubMedGoogle Scholar
  167. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new Petunia flower colour generated by transformation of a mutant with maize gene. Nature 330:677–678PubMedGoogle Scholar
  168. Meynet J, Cornu A, Paynot M (1971) Analyse du fonctionnement des genes majeurs impliqués dans la pigmentation florale de Petunia. Ann Amelior Plant 21:103–116Google Scholar
  169. Mishiba K, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673Google Scholar
  170. Mitchell AZ, Hanson MR, Skvirsky RC, Ausubel FM (1980) Anther culture of Petunia: genotypes with high frequency of callus, root, or plantlet formation. Z Pflanzenphysiol 100(131):146Google Scholar
  171. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217Google Scholar
  172. Mosig G (1960) Zur Genetik von Petunia hybrida II. Die analyse von genen der anthoxanthin und anthocyanbildung in der blute. Z Vererbungsl 91:164–181Google Scholar
  173. Muller I (1958) Cytogenetische Untersuchungen an Translokations Heterozygoten von Petunia hybrida. Z. vererbungslehre 89:246–263Google Scholar
  174. Muszynski S (1975) The induction of mutations in tetraploid petunias and their value for breeding. The Eucarpia Meeting, July 29–30, Alsmeer and Enkuizen, The NetherlandsGoogle Scholar
  175. Nakagawa H, Ferrario S, Angenent GC, Kobayashi A, Takatsuji H (2004) The petunia ortholog of Arabidopsis plays a distinct role in floral organ morphogenesis. Plant Cell 16:920–932PubMedGoogle Scholar
  176. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279--289PubMedGoogle Scholar
  177. Naudin CH (1865) De l’hybridite consideree comme cause de variabilite dans les vegetaux. Ann Sci Nat Bot V 3:153--163Google Scholar
  178. Nebel BR, Ruttle ML (1938) The cytological and genetical significance of colchicines. J Heredity 29:3--9Google Scholar
  179. Negre F, Kish CM, Boatright J, Underwood BA, Shibuya K, Wagner C, Clark DG, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2992–3006PubMedGoogle Scholar
  180. Nishiyama I (1938) Polyploid plants induced by the colchicines method. Bot Zoo 6:74--76Google Scholar
  181. Ohya I, Shinozaki Y, Tobita T, Takahashi H, Matsuzaki T (1996) Sucrose esters from the surface lipids of Petunia hybrida. Chemotaxonomy 41(3):787–789Google Scholar
  182. Paris CD, Haney WJ (1958) Genetic studies in Petunia I. Nine genes for flower colour. Proc Am Soc Hortic Sci 72:462–472Google Scholar
  183. Paris CD, Goldsmith GA (1959) Genetic studies in Petunia III. The Br and In3 genes. Abstr ASHS Meeting 1959, 394Google Scholar
  184. Paris CD, Wilson GB, Goldsmith GA (1959) Genetic studies in Petunia II. Two complementary genes for white. Abstracts of ASHS Meeting, p 393Google Scholar
  185. Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243PubMedGoogle Scholar
  186. Pelletier G, Delise B (1969) Sur la faculté de régéneration de plantes entières par culture in vitro du pédoncle floral de Petunia pendula. Ann Amelior Plant 19:353–355Google Scholar
  187. Power JB, Berry SF, Chapman JV, Cocking EC (1980) Somatic hybridization of sexually incompatible Petunias: Petunia parodii, Petunia parviflora. Theor Appl Genet 56:1–4Google Scholar
  188. Powers JB, Frearson EM, Hayward C, Geaorge D, Evans PK, Berry SF, Cocking EC (1976) Somatic hybridization of Petunia hybrida and Petunia parodii. Nature 263:500–502Google Scholar
  189. Powers JB, Berry SF, Champman JV, Cocking EC (1979) Somatic hybrids between unilateral cross-incompatible Petunia. Theor Appl Genet 55:97–99Google Scholar
  190. Prat S, Frommer WB, Hofgen R, Keil M, Kossmann J, Koster-Topfer M, Liu XJ, Muller B, Pena-Cortes H, Rocha-Sosa M et al (1990) Gene expression during tuber development in potato plants. FEBS Lett 268:334–338PubMedGoogle Scholar
  191. Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444PubMedGoogle Scholar
  192. Rafinesque-Schmaltz CC (1836) Stimoryne purpurea. Flora Telluriana 3:76Google Scholar
  193. Raquin C (1973) Etude de l’androgenese in vitro chez Petunia hybrida et Asparagus officinalis. Soc Bot Fr Mem 269–273Google Scholar
  194. Rasmuson H (1918) Uber eine Petunia-Kreuzung. Bot Not 287–295Google Scholar
  195. Reibel M, Ren J, Blowers AD (2006) Petunia mutant allele. http://www.faqs.org/patents/app/20080256658
  196. Reis CD, Sajo MG, Stehmann JR (2002) Leaf structure and taxonomy of Petunia and Calibrachoa (Solanaceae). Braz Arch Biol Technol 45(1):59–66Google Scholar
  197. Richardson FJ, Richardson RG, Shepherd RCH, Richardson FJ, Richardson RG, Shepherd RCH (2006) Weeds of the South-East. An identification guide for Australia. Meredith, Victoria, 438 p. ISBN 0958743932Google Scholar
  198. Rick CM (1943) Cytogenetic consequences of X-ray treatment of pollen in Petunia. Bot Gaz 104:528–540Google Scholar
  199. Rick CM (1971) Some cytogenetic features of the genome in diploid plant species. In: Kimber G, Redei GP (eds) Stadler genetics symposium 1 and 2, University of Missouri, Agricultural Experiment Station, Columbia, MO, USA, pp 153–175Google Scholar
  200. Robbins TP, Gerats AGM, Fiske H, Jorgensen RA (1995) Suppression of recombination in wide hybrids of Petunia hybrida as revealed by genetic mapping of marker transgenes. Theor Appl Genet 90:957–968Google Scholar
  201. Robbins TP, Harbord RM, Sonneveld T, Clarke K (2000) The molecular genetics of self-incompatibility in Petunia hybrida. Ann Bot 85(Supl A):105–112Google Scholar
  202. Robert N, Farcy E, Cornu A. (1991) Genetic control of meiotic recombination in Petunia hybrida: dosage effect of gene Rm1 on segments Hfl-Lgl and An2-Rt; role of modifiers. Genome 34:515–523Google Scholar
  203. Sangwan RS, Norreel B (1975) Induction of plants from pollen grains of Petunia cultured in vitro. Nature 257:222--224Google Scholar
  204. Santos RF, Handro W (1983) Morphological patterns in Petunia hybrida plants regenerated from tissue cultures and differing by their ploidy Theor. Appl Genet 66:55--60Google Scholar
  205. Schiz H, Thellung H (1915) Petunia integrifloia (Hook) Schinz et Thellung comb. Nov. viertelj. Naturforsch Gesel Zurich 60:361Google Scholar
  206. Schnabelrauch LS, Kloc-Bauchan F, Sink KC (1985) Expression of nuclear cyplasmic genomic incompatibility in interspecific Petunia somatic hybrid plants. Theor Appl Genet 66:55–60Google Scholar
  207. Schram AW, Jonsson LMV, Bennink GJH (1984) Biochemistry of flavonoid synthesis in Petunia hybrida. In: Sink KC (ed) Monographs on theoretical and applied genetics: Petunia. Springer, Berlin, Germany, pp 68–75Google Scholar
  208. Sen SK (1969) Synaptonemal complexes in haploid Petunia and Anthirrhinum sp. Naturwissenschaften 57:550Google Scholar
  209. Shaw JF, Chen H, Tsai M, Kuo C, Huang L (2004) Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol Breed 9(3):211–216Google Scholar
  210. Simonet M (1938) De l’obtention de varieties polyploides a grandes fleurs après application de colchicines. Rev Hort N.S. 26:159--161Google Scholar
  211. Sims TL, Ordanic M (2001) Identification of a S-RNase binding protein in Petunia hybrida. Plant Molec Biol 47:771--783Google Scholar
  212. Singh IS, Cornu A (1976) Recherches de plantes haploides de Petunia a noyau androgenetique et a cytoplasme gynogénétique determinant Ia stérilité pollinique. Ann Amelior Plant 26(565):568Google Scholar
  213. Sink KC Jr (1973) The inheritance of apetalous flower type in Petunia hybrida Vilm. and linkage tests with the genes doubleness and grandiflora characters and its use in hybrid seed production. Euphytica 22(520):526Google Scholar
  214. Sink KC (1984b) Protoplast fusion. In: Monographs on theoretical and applied genetics: Petunia. Springer, Berlin, Germany, pp 133–138Google Scholar
  215. Sink KC (1984b) Taxonomy. In: Sink KC (ed) Monographs on theoretical and applied genetics: Petunia. Springer, Berlin, Germany, pp 3–9Google Scholar
  216. Sink KC (ed) (1984c) Monographs on theoretical and applied genetics: Petunia. Springer, Berlin, GermanyGoogle Scholar
  217. Smith LB, Downs RJ (1966). Petunia. In: Reitz PR (ed) Flora Illustrada Catarinense. Solanaceas. Herbário ‘Barbosa Rodrigues’, Itajai, Santa Catarina, Brazil, pp 261–291Google Scholar
  218. Smith FJ, Odu JL (1972) The possibility to distinguish chromosomes of Petunia hybrida by quinacrine fluorescence. Genetica 43:589–596Google Scholar
  219. Smith FJ, Odu JL, De Jong JH (1973) A standard karyogram of Petunia hybrida Hort. Genetica 44:474–484Google Scholar
  220. Smith FJ, de Jong JH, Qud JL (1975) The use of primary trisomics for the localization of genes on the seven different chromosomes of Petunia hybrida. I. Triplo V. Genetica 45:361–370Google Scholar
  221. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170PubMedGoogle Scholar
  222. Steere WC (1930) Petunia parodii a new species of the subgenus pseudonicotiana from Argentina. Pap Mich Acad Sci 13:213–215Google Scholar
  223. Steere WC (1932) Chromosome behavior in triploid Petunia hybrids. Am J Bot 19(340):357Google Scholar
  224. Stehmann JR, Lorenz-Lemke AP, Freitas LB, Semir J (2009) The genus Petunia. In: T. Gerats, J. Strommer (eds) Petunia New York, NY: Springer.DOI: 10.1007/978-0-387-84796-2-1: pp 1–28
  225. Stormer I, von Witsch H (1938) Chemische und entwicklungsphysiologisch-genetische Untersuchungen über das Blfltenfarbmuster der Gartenpetunie. Planta 27:1–29Google Scholar
  226. Straub J (1973) Die genetische Variabilitãt haploider Petunien. Z Pflanzenzuecht 70:265–274Google Scholar
  227. Strommer J, Gerats AGM, Sanago M, Molnar SJ (2000) A gene-based RFLP map of petunia. Theor Appl Genet 100:899–905.Google Scholar
  228. Strommer J, Peters J, Zethof JDE, Keukeleire P, Gerats T (2002) AFLP maps of Petunia hybrida: building maps when markers cluster. Theor Appl Genet 105:1000–1009PubMedGoogle Scholar
  229. Stuurman J, Jäggi F, Kuhlemeier C (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev 16:2213–2218PubMedGoogle Scholar
  230. Stuurman J, Hoballah ME, Broger L, Moore J, Basten C, Kuhlemeier C (2004) Dissection of floral pollination syndromes in Petunia. Genetics 168:1585–1599PubMedGoogle Scholar
  231. Swanson T (1996) Global values of biological diversity: the public interest in the conservation of plant genetic resources for agriculture. Plant genetic Resources Newsletter, 105:1–7Google Scholar
  232. Sweet R (1935) Nierembergia atkinsiana. Br Fl Gard II 3:268Google Scholar
  233. Takehisa S (1961) Aneusomaty in the leaves of diploid Petunia. Bot Mag Tokyo 74:494–497Google Scholar
  234. Takehisa S (1963) The karyotype of Petunia hybrida and the differential chromosome condensation. Jpn J Genet 38:237–243Google Scholar
  235. Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Holton TA, Higgins E, Kusumi T (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavanol 4 reductase gene. Plant Cell Physiol 36:1023–1031PubMedGoogle Scholar
  236. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16(Suppl):S181–S189PubMedGoogle Scholar
  237. Touchell DH, Dixon KW (eds.) (1997) Conservation into the 21st Century. Proceedings of the 4th International Botanic Gardens Conservation Congress. pp 355Google Scholar
  238. Tsukamoto T, Ando T, Kurata M, Watanabe H, Kokubun H, Hashimoto G (1998) Resurrection of Petunia occidentalis R. E. Fr. (Solanaceae) inferred from a cross compatibility study. J Jpn Bot 73:15–21Google Scholar
  239. Tsukamoto T, Ando T, Kokubun H, Watanabe H, Masada M, Zhu X, Marchesi E, Kao T (1999) Breakdown of self-incompatibility in a natural population of Petunia axillaris (Solanaceae) in Uruguay containing both self-incompatible and self-compatible plants. Sex Plant Reprod 12(1):6–13Google Scholar
  240. Tsukamoto T, Ando T, Takahashi K, Omori T, Watanabe H, Kokubun H, Marchesi E, Kao T (2003) Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by loss of pollen function. Plant Physiol 131:1903–1912PubMedGoogle Scholar
  241. Vallade J, Cornu A (1979) Blocage embryonnaire d’origine maternelle chez deux mutants de Petunia hybrida. Bull Soc Bot Fr Actual Bot 126:39–52Google Scholar
  242. van den Berg BM, Wijsman HJM (1981) Genetics of the peroxydase enzymes in Petunia. Part 2: Location of the structural gene prxB of peroxydase b. Theor Appl Genet 61:297–303Google Scholar
  243. Van der Krol AR, Mur LA, de Lange P, Mol JNM, Stuitje AR (1990) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14(4):457–466PubMedGoogle Scholar
  244. van Houwelingen A, Souer E, Mol J, Koes R (1999) Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in petunia. Plant Cell 11(7):1319–1336PubMedGoogle Scholar
  245. van Wyk D (1964) Genetisch-biochemische Untersucbungen Ober die Flavonole bei Petunia hybrida. Z Vererbungsl 95:25–41Google Scholar
  246. Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB et al (2003) Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis: B, C and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15:2680–2693PubMedGoogle Scholar
  247. Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741–754PubMedGoogle Scholar
  248. Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC (2003) Regulation of floral scent production in Petunia revealed by targeted metabolomics. Phytochemistry 62:997–1008PubMedGoogle Scholar
  249. Vilmorin R (1863) Petunia hybrida. Les fleurs de pleine terre, pp 615Google Scholar
  250. Vilmorin R, Simonet M (1927) Variations du nombre de chromosomes chez quelques solanées. CR Acad Sci (Paris) 184:164–166Google Scholar
  251. Wagner G, Hess D (1974) Hapolide, diploide und triploide Pflanzen von Petunia hybrida aus Pollen \/ körnern. Z Pflanzenphysiol 73:273–276Google Scholar
  252. Wang X, Hughes AI, Tsukamoto T, Ando T, KaoT-H (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012--1022PubMedGoogle Scholar
  253. Watanabe H, Ando T, Iida S, Suzuki A, Buto K, Tsukamoto T (1996) Cross-compatibility of Petunia cultivars and P. axillaris with native taxa of Petunia in relation to their chromosome number. J Jpn Soc Hortic Sci 65:625–634Google Scholar
  254. Watanabe H, Ando T, Nishino E, Kokubun H, Tsukamoto T, Hashimoto G, Marchesi E (1999) Three groups of species in Petunia sensu Jussieu (Solanaceae) inferred from the seed morphology. Am J Bot 86:302–305PubMedGoogle Scholar
  255. Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257PubMedGoogle Scholar
  256. Werckmeister P (1954) Papierchromatographische Untersuchungen an Anthozyanen und chymochromen Begleitstoffen zur Frage der Blutenfarbenzuchtung. Zuechter 24(224):242Google Scholar
  257. West-gate VV (1911) Color inheritance in the petunia. Am Breed Assoc 6:459--462Google Scholar
  258. White J, Rees H (1985) The chromosome cytology of a somatic hybrid petunia. Heredity 55:53–59Google Scholar
  259. Wiering H (1974) Genetics of flower colour in Petunia hybrida Hort. Genen Phaenen 17:117–134Google Scholar
  260. Wiering H, de Vlaming P (1973) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. I. The gene Gf. Genen Phaenen 16:35–50Google Scholar
  261. Wiering H, de Vlaming P (1977) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. II. The genes Mfl and Mf2. Z Pflanzenzuecht 78:113–123Google Scholar
  262. Wiering H, de Vlaming P (1984) lnheritance and biochemistry of pigments In: Sink KC (ed) Monographs of theoretical and applied genetics: Petunia. Springer, Berlin, Germany, pp 49–68Google Scholar
  263. Wiering H, de Vlaming P, Cornu A, Maizonnier D (1979a) Petunia genetics. I. List of genes. Ann Amelior Plant 29:611–622Google Scholar
  264. Wiering H, de Vlaming P, Cornu A, Maizonnier D (1979b) Petunia genetics. II. A comparison of two gene banks. Ann Amelior Plant 29(699):708Google Scholar
  265. Wijands DO, Bos JJ, Wijisman HJW, Chneider FS, Brecknell CD, Zimmer K (1986) Proposal to conserve 7436 Petunia with P.nyctanginiflora as typ. Cons. Taxon 35:748–749Google Scholar
  266. Wijsman HJW (1982) On the inter-relationship of certain species of Petunia I Taxonomic notes on the parental species of Petunia hybrida. Acta Bot Neerl 31:477–490Google Scholar
  267. Wijsman HJW (1983) Current status of isozyme research in Petunia. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam, Netherlands, pp 229–252Google Scholar
  268. Wijsman HJW (1990) On the interrelationship of certain species of Petunia. IV. New names for the species Calibrachoa formerly included into petunia. Acta Bot Neerl 39:101–102Google Scholar
  269. Wijsman HJW, Jong JH (1985) On the interrelationships of certain species of Petunia IV. Hybridization between P. linearis and P. calycina and nomenclatorial consequenses in Petunia group. Acta Bot Neerl 34(3):337–349Google Scholar
  270. Willstatter R, Burdick CHL (1917) Uber den Farbstoffder Petunie. Liebigs Ann Chem 412(217):230Google Scholar
  271. Winefield C, Lewis D, Arathoon S, Deroles S (1999) Alteration of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol Breed 5:543–551Google Scholar
  272. Zhang X, Takahashi H, Nakamura I, Mii M (2008) Molecular discrimination among taxa of Petunia axillaris complex and P. integrifolia complex based on PolA1 sequence analysis. Breed Sci 58(1):71–75Google Scholar
  273. Zheng Y, Ma Y, Liu Q, Cai W (2005) An antisense Etr1 cDNA from rose can reduce the ethylene sensitivity of Petunias. Acta Hortic 751:473–479Google Scholar
  274. Zubko E, Adams CJ, Macháčková I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808PubMedGoogle Scholar
  275. Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Ganga
    • 1
  • S. Jayalakshmi
    • 2
  • V. Jegadeeswari
    • 3
  • K. Padmadevi
    • 4
  • M. Jawaharlal
    • 5
  1. 1.Department of Floriculture & Landscaping, Horticultural College and Research InstituteTamil Nadu Agricultural UniversityCoimbatoreIndia
  2. 2.State Horticulture DepartmentGovernment Botanical GardensOotyIndia
  3. 3.Horticultural Research Station (TNAU)OotyIndia
  4. 4.Horticultural College and Research Institute (TNAU)PeriyakulamIndia
  5. 5.Department of Floriculture and Landscaping, Horticultural College and Research InstituteTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations