Extended Pareto Optimality in Multiobjective Problems

Part of the Vector Optimization book series (VECTOROPT, volume 1)


This chapter largely discusses some major notions of optimal/efficient solutions in multiobjective optimization and studies general necessary conditions for minimal points of sets and for minimizers of constrained set-valued optimization problems with respect to extended Pareto preference relations.


Multiobjective Optimization Minimal Point Multiobjective Optimization Problem Extremal Principle Feasible Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research of the first author was partially supported by the NMU Faculty Grant FG-5-54844. Research of the second author was partially supported by the US National Science Foundation under grants DMS-0603846 and DMS-1007132 and by the Australian Research Council under grant DP-12092508.


  1. 1.
    Bao, T.Q., Gupta, P., Mordukhovich, B.S.: Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 135, 179–203 (2007)CrossRefGoogle Scholar
  2. 2.
    Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybernet. 36, 531–562 (2007)Google Scholar
  3. 3.
    Bao, T.Q., Mordukhovich, B.S.: Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints. Appl. Math. 52, 452–562 (2007)CrossRefGoogle Scholar
  4. 4.
    Bao, T.Q., Mordukhovich, B.S.: Necessary conditions for super minimizers in constrained multiobjective optimization. J. Global Optim. 43, 533–552 (2009)CrossRefGoogle Scholar
  5. 5.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers in multiobjective optimization: Existence and optimality conditions. Math. Program. 122, 301–347 (2010)CrossRefGoogle Scholar
  6. 6.
    Bao, T.Q., Mordukhovich, B.S.: Set-valued optimization in welfare economics. Adv. Math. Econ. 13, 113–153 (2010)CrossRefGoogle Scholar
  7. 7.
    Bao, T.Q., Mordukhovich, B.S.: Necessary optimality conditions and applications to welfare economics. Comm. Pure Appl. Math. Accepted (2010)Google Scholar
  8. 8.
    Bellaassali, S., Jourani, A.: Lagrange multipliers for multiobjective programs with a general preference. Set-Valued Anal. 16, 229–243 (2008)CrossRefGoogle Scholar
  9. 9.
    Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115, 2542–2553 (2003)CrossRefGoogle Scholar
  10. 10.
    Borwein, J.M., Lewis, A.S.: Partially finite convex programming, Part I: Quasi relative inteiors and duality theory. Math. Program. 57, 15–48 (1992)Google Scholar
  11. 11.
    Durea, M., Dutta, J.: Lagrange multipliers for Pareto minima in general Banach spaces. Pac. J. Optim. 4(2008) 447-463Google Scholar
  12. 12.
    Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for ε-Pareto solutions in vector optimization with non-solid cones in Banach spaces. J. Optim. Theory Appl. 145, 169–211 (2010)CrossRefGoogle Scholar
  13. 13.
    Durea, M., Strugariu, R.: On some Fermat rules for set-valued optimization problems. Optimization. Accepted (2010)Google Scholar
  14. 14.
    Durea, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)CrossRefGoogle Scholar
  15. 15.
    Dutta, J., Tammer, C.: Lagrangian conditions for vector optimization in Banach spaces. Math. Meth. Oper. Res. 64, 521–541 (2006)CrossRefGoogle Scholar
  16. 16.
    Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics 17, Springer, New York (2003)Google Scholar
  17. 17.
    Guerraggio, A., Luc, D.T.: Properly maximal points in product spaces. Math. Oper. Res. 31, 305–315 (2006)CrossRefGoogle Scholar
  18. 18.
    Ha, T.X.D.: Versions of the Ekeland variational principle for approximate Henig proper minimizers and approximate super minimizers of a set-valued map involving coderivatives. J. Math. Anal. Appl. 354, 156–170 (2010)CrossRefGoogle Scholar
  19. 19.
    Hurwicz, L., Uzawa, H.: A note on Largrangian saddle-points. In: Arrow, K.J., Karlin, S., Suppes, P. (eds.) Studies in Linear and Non-Linear Programming, pp. 103–113. Stanford University Press, Stanford, California (1958)Google Scholar
  20. 20.
    Kruger, A.Y., Mordukhovich, B.S.: Extremal points and the Euler equation in nonsmooth optimization. Dokl. Akad. Nauk BSSR 24, 684–687 (1980)Google Scholar
  21. 21.
    Ioffe, A.D.: Variational analysis and mathematical economics, I: Subdifferential calculus and the second theorem of welfare economics. Adv. Math. Econ. 12, 71–95 (2009)Google Scholar
  22. 22.
    Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)Google Scholar
  23. 23.
    Jofré, A.: A second welfare theorem in nonconvex economies. In: Théra, M. (ed) Constructive, Experimental and Nonlinear Analysis. Canad. Math. Soc. Conf. Proc. 27, 175–184 (2000)Google Scholar
  24. 24.
    Jofré, A., Cayupi, J.R.: A nonconvex separation property and some applications. Math. Program. 108, 37–51 (2006)CrossRefGoogle Scholar
  25. 25.
    Khan, M.A.: Ioffe’s normal cone and the foundations of welfare economics: The infinite dimensional theory. J. Math. Anal. Appl. 161, 284–298 (2001)CrossRefGoogle Scholar
  26. 26.
    Khan, M.A.: The Mordukhovich normal cone and the foundations of welfare economics. J. Public Economic Theory 1, 309–338 (1999)CrossRefGoogle Scholar
  27. 27.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)Google Scholar
  28. 28.
    Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, United Kingdom (1996)Google Scholar
  29. 29.
    Mas-Colell, A.: The Theory of General Economic Equilibrium. Econometric Society Monographs 9, Cambridge University Press, Cambridge, United Kingdom (1985)Google Scholar
  30. 30.
    Mordukhovich, B.S.: Maximum principles in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)CrossRefGoogle Scholar
  31. 31.
    Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)Google Scholar
  32. 32.
    Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340, 1–35 (1993)CrossRefGoogle Scholar
  33. 33.
    Mordukhovich, B.S.: Abstract extremal principle with applications to welfare economics. J. Math. Anal. Appl. 161, 187–212 (2000)CrossRefGoogle Scholar
  34. 34.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330. Springer, Berlin (2006)Google Scholar
  35. 35.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 331, Springer, Berlin (2006)Google Scholar
  36. 36.
    Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math. Soc. 348, 1235–1280 (1996)CrossRefGoogle Scholar
  37. 37.
    Mordukhovich, B.S., Treiman, J.S., Zhu, Q.J.: An extended extremal principle with applications to multiobjective optimization. SIAM J. Optim. 14, 359–379 (2003)CrossRefGoogle Scholar
  38. 38.
    Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht, The Netherlands (1998)Google Scholar
  39. 39.
    Rockafellar, R.T.: Directional Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc. 39, 331–355 (1989)CrossRefGoogle Scholar
  40. 40.
    Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 317, Springer, Berlin (1998)Google Scholar
  41. 41.
    Samuelson, P.A.: Foundations of Economic Analysis. Harvard University Press, Cambridge, Massachusetts (1947)Google Scholar
  42. 42.
    Stadler, W.: Preference optimality in multicriteria control and programming problems. Nonlin. Anal. 4, 51–65 (1980)CrossRefGoogle Scholar
  43. 43.
    Stadler, W.: Initiators of multiobjective optimization. In: Stadler, W. (ed.) Multiobjective Optimization in Engineering and in Sciences, pp. 3–25. Series in Mathematical Concepts and Mathematics in Science and Engineering 37. Plenum Press, New York (1988)Google Scholar
  44. 44.
    Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (2006)Google Scholar
  45. 45.
    Yang, X.M., Li, D., Wang, S.Y.: Nearly-subconvexilikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)CrossRefGoogle Scholar
  46. 46.
    Zheng, X.Y., Ng, K.F.: The Fermat rule for multifunctions on Banach spaces. Math. Program. 104, 69–90 (2005)CrossRefGoogle Scholar
  47. 47.
    Zheng, X.Y., Ng, K.F.: The Lagrange multiplier rule for multifunctions in Banach spaces. SIAM J. Optim. 17, 1154–1175 (2006)CrossRefGoogle Scholar
  48. 48.
    Zhu, Q.J.: Hamiltonian necessary conditions for a multiobjective optimal control problems with endpoint constraints. SIAM J. Control Optim. 39, 97–112 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics & Computer ScienceNorthern Michigan UniversityMarquetteUSA
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations