Advertisement

Invariant Set and Attractor of Discrete-Time Impulsive Recurrent Neural Networks

  • Bing Li
  • Qiankun Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6675)

Abstract

In this paper, we study the invariant set and attractor of the discrete-time impulsive recurrent neural networks (DIRNNs). By using a powerful delay difference inequality and properties of nonnegative matrices, we get some sufficient criteria to determine the invariant set and attractor of DIRNNs. Some examples demonstrate the efficiency.

Keywords

Invariant set Attractor Exponential stability Neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, H., Chen, L.S.: Asymptotic Behavior of Discrete Solutions to Delayed Neural Networks with Impulses. Neurocomputing 71, 1032–1038 (2008)CrossRefGoogle Scholar
  2. 2.
    Liao, X.X., Luo, Q., Zeng, Z.G.: Positive Invariant and Global Exponential Attractive Sets of Neural Networks with Time-varying Delays. Neurocomputing 71, 513–518 (2008)CrossRefGoogle Scholar
  3. 3.
    Song, Q.K., Cao, J.D.: Dynamical Behaviors of Discrete-time Fuzzy Cellular Neural Networks with Variable Delays and Impulses. Journal of the Franklin Institute 345, 39–59 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Song, Q.K., Wang, Z.D.: A Delay-dependent LMI Approach to Dynamics Analysis of Discrete-time Recurrent Neural Networks with time-varying Delays. Physics Letters A 368, 134–145 (2007)CrossRefGoogle Scholar
  5. 5.
    Liu, Y.R., Wang, Z.D., Serrano, A., Liu, X.H.: Discrete-time Recurrent Neural Networks with Time-varying Delays: Exponential stability Analysis. Physics Letters A 362, 480–488 (2007)CrossRefGoogle Scholar
  6. 6.
    Yu, J.J., Zhang, K.J., Fei, S.M.: Exponential Stability Criteria for Discrete-time Recurrent Neural Networks with Time-varying Delay. Nonlinear Analysis: Real World Applications 11, 207–216 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Song, C.W., Gao, H.J., Zheng, W.X.: A New Approach to Stability Analysis of Discrete-time Recurrent Neural Networks with Time-varying Delay. Neurocomputing 72, 2563–2568 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhang, B.Y., Xu, S.Y., Zou, Y.: Improved Delay-dependent Exponential Stability Criteria for Discrete-time Recurrent Neural Networks with Time-varying Delays. Neurocomputing 72, 321–330 (2008)CrossRefGoogle Scholar
  9. 9.
    Zhu, X.L., Wang, Y.Y., Yang, G.H.: New Delay-dependent Stability Results for Discrete-time Recurrent Neural Networks with Time-varying Delay. Neurocomputing 72, 3376–3383 (2009)CrossRefGoogle Scholar
  10. 10.
    Wu, Z.G., Su, H.Y., Chu, J., Zhou, W.N.: New Results on Robust Exponential Stability for Discrete Recurrent Neural Networks with Time-varying Delays. Neurocomputing 72, 3337–3342 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhu, W., Xu, D.Y., Yang, Z.C.: Global Exponential Stability of Impulsive Delay Difference Equation. Applied Mathematics and Computation 181, 65–72 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhu, W.: Invariant and Attracting Sets of Impulsive Delay Difference Equations with Continuous Variables. Computers and Mathematics with Applications 55, 2732–2739 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bing Li
    • 1
  • Qiankun Song
    • 1
  1. 1.Department of MathematicsChongqing Jiaotong UniversityChongqingChina

Personalised recommendations