Pulsed Eddy Current Thermography and Applications

  • G. Y. Tian
  • J. Wilson
  • L. Cheng
  • D. P. Almond
  • E. Kostson
  • B. Weekes

Abstract

In this paper we report on the application of the pulsed eddy current thermography inspection technique to the detection and quantification of defects in a variety of materials. After introducing the appropriate modelling and simulation techniques an overview of a typical PEC thermography system setup is provided. Applications of the system for defect detection in nickel alloys, composite materials and ferritic materials including multiple complex cracking in rail-tracks are discussed.

Keywords

Induction heating pulsed eddy current thermography defects NDT & E 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avdelidis, N.P., Hawtin, B.C., Almond, D.P.: Transient thermography in the assessment of defects of aircraft composites. NDT&E International 36(6), 433–439 (2003)CrossRefGoogle Scholar
  2. 2.
    Hung, Y.Y., Chen, Y.S., Ng, S.P., Liu, L., Huang, Y.H., Luk, B.L., Ip, R.W.L., Wu, C.M.L., Chung, P.S.: Review and comparison of shearography and active thermography for nondestructive evaluation. Materials Science and Engineering: R: Reports 64(5-6), 73–112 (2009)CrossRefGoogle Scholar
  3. 3.
    Nino, G.F., Ahmed, T.J., Bersee, H.E.N., Beukers, A.: Thermal NDI of resistance welded composite structures. Composites Part B: Engineering 40(3), 237–248 (2009)CrossRefGoogle Scholar
  4. 4.
    Abidin, I.Z., Tian, G.Y., Wilson, J., Yang, S., Almond, D.: Quantitative evaluation of angular defects by pulsed eddy current thermography. NDT & E International 43(7), 537–546 (2010)CrossRefGoogle Scholar
  5. 5.
    Zöcke, C.M.: Quantitative analysis of defects in composite material by means of optical lockin thermography, Dr. Ing. Dissertation, Saarbrucker Reihe Materialwissenschaft Und Werkstofftechnik (December 2009)Google Scholar
  6. 6.
    Morbidini, M., Cawley, P.: The detectability of cracks using sonic IR. Journal of Applied Physics 105(9), 093530–93530-9 (2009)CrossRefGoogle Scholar
  7. 7.
    Vrana, J., Goldammer, M., Baumann, J., Rothenfusser, M., Arnold, W.: Mechanisms and models for crack detection with induction thermography. In: 34th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 975, pp. 475–482 (2008)Google Scholar
  8. 8.
    Wilson, J., Tian, G.Y., Abidin, I.Z., Yang, S., Almond, D.: Modelling and evaluation of eddy current stimulated thermography. Nondestructive Testing and Evaluation 25(3), 205–218 (2010)CrossRefGoogle Scholar
  9. 9.
    Zenzinger, G., Bamberg, J., Dumm, M., Nutz, P.: Crack Detection Using Eddytherm. In: Thompson, D.O., Chimenti, D.E. (eds.) CP760, Review of Quantitative Nondestructive Evaluation, vol. 760, pp. 1646–1653. American Institute of Physics, New York (2005)Google Scholar
  10. 10.
    Netzelmann, U., Walle, G.: Induction Thermography as a Tool for Reliable Detection of Surface Defects in Forged Components. In: 17th World Conference on Nondestructive Testing, Shanghai, China, October 25–28 (2008)Google Scholar
  11. 11.
    Oswald-Tranta, B., Wally, G.: Thermo-inductive surface crack detection in metallic materials. In: ECNDT 2006, Berlin, Paper Number We.3.8.3 (2006)Google Scholar
  12. 12.
    Wally, G., Oswald-Tranta, B.: The Influence of Crack Shapes and Geometries on the Results of the Thermo-Inductive Crack Detection. In: Proc. SPIE, vol. 6541, p. 11 (2007)Google Scholar
  13. 13.
    Walle, G., Netzelmann, U.: Thermographic Crack Detection in Ferritic Steel Components Using Inductive Heating. In: ECNDT 2006, Berlin, Paper No. Tu.4.8.5 (2006)Google Scholar
  14. 14.
    Zenzinger, G., Bamberg, J., Satzger, W., Carl, V.: Thermographic Crack Detection in Ferritic Steel Components Using Inductive Heating. In: ECNDT 2006 Tu.4.8.5 (2006)Google Scholar
  15. 15.
  16. 16.
    Cannon, D.F., Edel, K.O., Grassie, S.L., Sawley, K.: Rail defects: an overview. Fatigue & Fracture of Engineering Materials & Structures 26(10), 865–886 (2003)CrossRefGoogle Scholar
  17. 17.
    Hesse, D., Cawley, P.: Excitation of Surface Wave Modes in Rails and their Application for Defect Detection. In: AIP Conf. Proc., vol. 820, pp. 1593–1600 (March 2006)Google Scholar
  18. 18.
    Pohl, R., Erhard, A., Montag, H.-J., Thomas, H.-M., Wüstenberg, H.: NDT techniques for railroad wheel and gauge corner inspection. NDT & E International 37(2), 89–94 (2004)CrossRefGoogle Scholar
  19. 19.
    Wang, W.J., Guo, J., Liu, Q.Y., Zhu, M.H., Zhou, Z.R.: Study on relationship between oblique fatigue crack and rail wear in curve track and prevention. Wear 267(1-4), 540–544 (2009)CrossRefGoogle Scholar
  20. 20.
    Grassie, S.L.: Rolling contact fatigue on the British railway system: treatment. Wear 258(7-8), 1310–1318 (2005)CrossRefGoogle Scholar
  21. 21.
    Office of Rail Regulation, Train Derailment at Hatfield: A final Report by the Independent Investigation Board (July 2006), http://www.rail-reg.gov.uk/upload/pdf/297.pdf (accessed October 2010)
  22. 22.
    Garnham, J.E., Davis, C.L.: Very Early Stage Rolling Contact Fatigue Crack Growth in Pearlitic Rail Steels 27(1-2), 100–112 (2011) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • G. Y. Tian
    • 1
  • J. Wilson
    • 1
  • L. Cheng
    • 1
  • D. P. Almond
    • 2
  • E. Kostson
    • 2
  • B. Weekes
    • 2
  1. 1.School of Electrical, Electronic and Computer EngineeringNewcastle UniversityUK
  2. 2.RCNDE, Department of Mechanical EngineeringUniversity of BathUK

Personalised recommendations