Advertisement

Finger-Knuckle-Print Recognition Using LGBP

  • Ming Xiong
  • Wankou Yang
  • Changyin Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6676)

Abstract

Recently, a new biometrics, finger-knuckle-print recognition, has attractive interests of researchers. The popular techniques used in face recognition are not applied in finger-knuckle-print recognition. Inspired by the success of Local Gabor Binary Patterns (LGBP) in face recognition, we present a method that uses LGBP to identify finger-knuckle-print images. The experimental results show that our proposed method works well.

Keywords

finger-knuckle-print Gabor feature representation LBP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, D.: Automated Biometrics: Technologies and Systems. Kluwer Academic, Dordrecht (2000)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Flynn, P., Ross, A.: Handbook of Biometrics. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    E-channel System of the Hong Kong government, http://www.immd.gov.hk/ehtml/20041216.htm
  4. 4.
    Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier, Computer Vision and Image Understanding, vol. 100, pp. 357–384 (2005)Google Scholar
  5. 5.
    Woodard, D.L., Flynn, P.J.: Personal identification utilizing finger surface features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2005, vol. 2, pp. 1030–1036 (2005)Google Scholar
  6. 6.
    Ravikanth, C., Kumar, A.: Biometric Authentication using Finger-Back Surface. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2007, pp. 1–6 (2007)Google Scholar
  7. 7.
    Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Online Finger-Knuckle-Print Verification for Personal Authentication. Pattern Recognition 43(7), 2560–2571 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition. In: ICCV (2005)Google Scholar
  9. 9.
    Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans. Image Processing 16(1), 57–68 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ojala, T., Pietikainen, M., Maeopaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Ojala, T., Pietikainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  12. 12.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 2037–2041 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, L., Zhang, L., Zhang, D.: Finger-knuckle-print: a new biometric identifier. In: Proceedings of the IEEE International Conference on Image Processing (2009)Google Scholar
  14. 14.
    The Hong Kong PolyU FKP database, http://www4.comp.polyu.edu.hk/~biometrics/FKP.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ming Xiong
    • 1
  • Wankou Yang
    • 1
  • Changyin Sun
    • 1
  1. 1.School of AutomationSoutheast UniversityNanjingChina

Personalised recommendations