Advertisement

Antitumor Ribonucleases

  • Marc RibóEmail author
  • Antoni BenitoEmail author
  • Maria VilanovaEmail author
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC)

Abstract

Ribonucleases are small basic proteins that have shown remarkable antitumor activity linked to their ability to destroy RNA. Therefore, they are a second line of cancer chemotherapeutics as they are not genotoxic. This chapter summarizes the main biochemical characteristics of these enzymes and the key factors responsible for their cytotoxic mechanism. Some of them are shared by most cytotoxins, but each RNase has particular cancer cell killing abilities. The effects on the cell cycle and the induced apoptosis mechanism are cell dependent. The knowledge obtained from the cytotoxic mechanism of natural cytotoxic RNases has been used to artificially engineer more potent and selective RNA-degrading enzymes. These approaches are also described. The chapter ends with a brief description of the results of the clinical trials performed with RNases.

Keywords

Ribonuclease Inhibitor Eosinophil Cationic Protein Cytotoxic Mechanism Human Breast Cancer Xenograft Ribonucleolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by grants BFU2009-06935 from MICINN (Spain) and GRCT04 from the University of Girona.

References

  1. Aleksandrowicz J (1958) Intracutaneous ribonuclease in chronic myelocytic leukemia. Lancet 272:420–422CrossRefGoogle Scholar
  2. Altomare DA, Rybak SM, Pei J, Maizel JV, Cheung M, Testa JR, Shogen K (2010) Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent. BMC Cancer 10:34PubMedCrossRefGoogle Scholar
  3. Antignani A, Naddeo M, Cubellis MV, Russo A, D’Alessio G (2001) Antitumor action of seminal ribonuclease, its dimeric structure, and its resistance to the cytosolic ribonuclease inhibitor. Biochemistry 40:3492–3496PubMedCrossRefGoogle Scholar
  4. Ardelt W, Mikulski SM, Shogen K (1991) Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem 266:245–251PubMedGoogle Scholar
  5. Ardelt B, Ardelt W, Darzynkiewicz Z (2003) Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2:22–24PubMedCrossRefGoogle Scholar
  6. Ardelt B, Juan G, Burfeind P, Salomon T, Wu JM, Hsieh TC, Li X, Sperry R, Pozarowski P, Shogen K, Ardelt W, Darzynkiewicz Z (2007a) Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. Int J Oncol 31:663–669PubMedGoogle Scholar
  7. Ardelt B, Ardelt W, Pozarowski P, Kunicki J, Shogen K, Darzynkiewicz Z (2007b) Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle 6:3097–3102PubMedCrossRefGoogle Scholar
  8. Ardelt W, Shogen K, Darzynkiewicz Z (2008) Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol 9:215–225PubMedCrossRefGoogle Scholar
  9. Ardelt W, Ardelt B, Darzynkiewicz Z (2009) Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol 625:181–189PubMedCrossRefGoogle Scholar
  10. Arndt MA, Krauss J, Vu BK, Newton DL, Rybak SM (2005) A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J Immunother 28:245–251PubMedCrossRefGoogle Scholar
  11. Arnold U (2008) Aspects of the cytotoxic action of ribonucleases. Curr Pharm Biotechnol 9:161–168PubMedCrossRefGoogle Scholar
  12. Arnold U, Ulbrich-Hofmann R (2006) Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett 28:1615–1622PubMedCrossRefGoogle Scholar
  13. Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R (2006) Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Biochemistry 45:3580–3587PubMedCrossRefGoogle Scholar
  14. Balandin TG, Edelweiss E, Andronova NV, Treshalina EM, Sapozhnikov AM, Deyev SM (2011) Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Invest New Drugs 29(1):22–32, Epub 2009 Sep 30PubMedCrossRefGoogle Scholar
  15. Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR, Gleich GJ (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143:952–955PubMedGoogle Scholar
  16. Bartholeyns J, Baudhuin P (1976) Inhibition of tumor cell proliferation by dimerized ribonuclease. Proc Natl Acad Sci USA 73:573–576PubMedCrossRefGoogle Scholar
  17. Bartholeyns J, Moore S (1974) Pancreatic ribonuclease: enzymic and physiological properties of a cross-linked dimer. Science 186:444–445PubMedCrossRefGoogle Scholar
  18. Beck AK, Pass HI, Carbone M, Yang H (2008) Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol 4:341–349PubMedCrossRefGoogle Scholar
  19. Benito A, Ribo M, Vilanova M (2005) On the track of antitumour ribonucleases. Mol Biosyst 1:294–302PubMedCrossRefGoogle Scholar
  20. Benito A, Laurents DV, Ribo M, Vilanova M (2008a) The structural determinants that lead to the formation of particular oligomeric structures in the pancreatic-type ribonuclease family. Curr Protein Pept Sci 9:370–393PubMedCrossRefGoogle Scholar
  21. Benito A, Vilanova M, Ribo M (2008b) Intracellular routing of cytotoxic pancreatic-type ribonucleases. Curr Pharm Biotechnol 9:169–179PubMedCrossRefGoogle Scholar
  22. Boix E (2001) Eosinophil cationic protein. Methods Enzymol 341:287–305PubMedCrossRefGoogle Scholar
  23. Boix E, Wu Y, Vasandani VM, Saxena SK, Ardelt W, Ladner J, Youle RJ (1996) Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol 257:992–1007PubMedCrossRefGoogle Scholar
  24. Boix E, Leonidas DD, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR (1999) Crystal structure of eosinophil cationic protein at 2.4 A resolution. Biochemistry 38:16794–16801PubMedCrossRefGoogle Scholar
  25. Boix E, Torrent M, Sanchez D, Nogues MV (2008) The antipathogen activities of eosinophil cationic protein. Curr Pharm Biotechnol 9:141–152PubMedCrossRefGoogle Scholar
  26. Bosch M, Benito A, Ribo M, Puig T, Beaumelle B, Vilanova M (2004) A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry 43:2167–2177PubMedCrossRefGoogle Scholar
  27. Bracale A, Spalletti-Cernia D, Mastronicola M, Castaldi F, Mannucci R, Nitsch L, D’Alessio G (2002) Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem J 362:553–560PubMedCrossRefGoogle Scholar
  28. Bracale A, Castaldi F, Nitsch L, D’Alessio G (2003) A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action. Eur J Biochem 270:1980–1987PubMedCrossRefGoogle Scholar
  29. Braschoss S, Hirsch B, Dubel S, Stein H, Durkop H (2007) New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma 48:1179–1186PubMedCrossRefGoogle Scholar
  30. Bretscher LE, Abel RL, Raines RT (2000) A ribonuclease A variant with low catalytic activity but high cytotoxicity. J Biol Chem 275:9893–9896PubMedCrossRefGoogle Scholar
  31. Cafaro V, De Lorenzo C, Piccoli R, Bracale A, Mastronicola MR, Di Donato A, D’Alessio G (1995) The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett 359:31–34PubMedCrossRefGoogle Scholar
  32. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV (2005) Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 272:1–7PubMedCrossRefGoogle Scholar
  33. Chang CF, Chen C, Chen YC, Hom K, Huang RF, Huang TH (1998) The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J Mol Biol 283:231–244PubMedCrossRefGoogle Scholar
  34. Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH, Chung CT, Fang SL, Chao CC, Tsai JJ, Lai YK (2010) TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC Cell Biol 11:6PubMedCrossRefGoogle Scholar
  35. Chao TY, Lavis LD, Raines RT (2010) Cellular uptake of ribonuclease A relies on anionic glycans. Biochemistry 49:10666–10673PubMedCrossRefGoogle Scholar
  36. Chun H, Costanzi J, Mittelman A, Panella T, Puccio C, Coombe N, Shogen K, Mikulski S (1995) Phase I/II trial of onconase (ONC) plus tamoxifen (TMX) in patients (pts) with advanced pancreatic carcinoma. Proc Am Soc Clin Oncol (ASCO) 14: Abstract 517Google Scholar
  37. Cinalt JJ, Cinatl J, Kotchetkov R, Vogel J, Woodcock B, Matousek J, Pouckova P, Kornhuber B (1999) Bovine seminal ribonuclease selectively kills human multidrug-resistant neuroblastoma cells via induction of apoptosis. Int J Oncol 15:1001–1009Google Scholar
  38. Costanzi J, Sidransky D, Navon A, Goldsweig H (2005) Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest 23:643–650PubMedCrossRefGoogle Scholar
  39. Cuchillo CM, Vilanova M, Nogués MV (1997) Pancreatic ribonucleases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 271–304CrossRefGoogle Scholar
  40. D’Alessio G, Di Donato A, Parente A, Piccoli R (1991) Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci 16:104–106PubMedCrossRefGoogle Scholar
  41. D’Alessio G, di Donato A, Mazzarella L, Piccoli R (1997) Seminal ribonuclease: the importance of diversity. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 383–423CrossRefGoogle Scholar
  42. Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K (1988) Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet 21:169–182PubMedGoogle Scholar
  43. De Lorenzo C, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R, D’Alessio G (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874PubMedCrossRefGoogle Scholar
  44. De Lorenzo C, Di Malta C, Cali G, Troise F, Nitsch L, D’Alessio G (2007) Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Lett 581:296–300PubMedCrossRefGoogle Scholar
  45. Deptala A, Halicka HD, Ardelt B, Ardelt W, Mikulski SM, Shogen K, Darzynkiewicz Z (1998) Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol 13:11–16PubMedGoogle Scholar
  46. Di Donato A, Cafaro V, D’Alessio G (1994) Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem 269:17394–17396PubMedGoogle Scholar
  47. Di Gaetano S, D’Alessio G, Piccoli R (2001) Second generation antitumour human RNase: significance of its structural and functional features for the mechanism of antitumour action. Biochem J 358:241–247PubMedCrossRefGoogle Scholar
  48. Dickson KA, Raines RT (2009) Silencing an inhibitor unleashes a cytotoxic enzyme. Biochemistry 48:5051–5053PubMedCrossRefGoogle Scholar
  49. Dickson KA, Dahlberg CL, Raines RT (2003) Compensating effects on the cytotoxicity of ribonuclease A variants. Arch Biochem Biophys 415:172–177PubMedCrossRefGoogle Scholar
  50. Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374PubMedCrossRefGoogle Scholar
  51. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26:3358–3363PubMedCrossRefGoogle Scholar
  52. Dübel S (2007) Handbook of therapeutic antibodies. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  53. Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA 76:1443–1447PubMedCrossRefGoogle Scholar
  54. Ellis GA, Hornung ML, Raines RT (2010) Potentiation of ribonuclease cytotoxicity by a poly(amidoamine) dendrimer. Bioorg Med Chem Lett. doi: 10.1016/j.bmcl.2010.11.028 Google Scholar
  55. Ercole C, Colamarino RA, Pizzo E, Fogolari F, Spadaccini R, Picone D (2009) Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach. Biopolymers 91:1009–1017PubMedCrossRefGoogle Scholar
  56. Fan TC, Chang HT, Chen IW, Wang HY, Chang MD (2007) A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 8:1778–1795PubMedCrossRefGoogle Scholar
  57. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD (2008) Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem 283:25468–25474PubMedCrossRefGoogle Scholar
  58. Fang EF, Ng TB (2011) Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta 1815:65–74PubMedGoogle Scholar
  59. Favaretto A (2005) Overview on ongoing or planned clinical trials in Europe. Lung Cancer 49(Suppl 1):S117–S121PubMedCrossRefGoogle Scholar
  60. Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544PubMedCrossRefGoogle Scholar
  61. Fuchs SM, Rutkoski TJ, Kung VM, Groeschl RT, Raines RT (2007) Increasing the potency of a cytotoxin with an arginine graft. Protein Eng Des Sel 20:505–509PubMedCrossRefGoogle Scholar
  62. Futami J, Maeda T, Kitazoe M, Nukui E, Tada H, Seno M, Kosaka M, Yamada H (2001) Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry 40:7518–7524PubMedCrossRefGoogle Scholar
  63. Futami J, Nukui E, Maeda T, Kosaka M, Tada H, Seno M, Yamada H (2002) Optimum modification for the highest cytotoxicity of cationized ribonuclease. J Biochem 132:223–228PubMedCrossRefGoogle Scholar
  64. Gahl RF, Scheraga HA (2009) Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Biochemistry 48:2740–2751PubMedCrossRefGoogle Scholar
  65. Gahl RF, Narayan M, Xu G, Scheraga HA (2008) Dissimilarity in the oxidative folding of onconase and ribonuclease A, two structural homologues. Protein Eng Des Sel 21:223–231PubMedCrossRefGoogle Scholar
  66. Gaur D, Swaminathan S, Batra JK (2001) Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J Biol Chem 276:24978–24984PubMedCrossRefGoogle Scholar
  67. Gelardi T, Damiano V, Rosa R, Bianco R, Cozzolino R, Tortora G, Laccetti P, D’Alessio G, De Lorenzo C (2010) Two novel human anti-ErbB2 immunoagents are active on trastuzumab-resistant tumours. Br J Cancer 102:513–519PubMedCrossRefGoogle Scholar
  68. Gho YS, Chae CB (1999) Luteinizing hormone releasing hormone-RNase A conjugates specifically inhibit the proliferation of LHRH-receptor-positive human prostate and breast tumor cells. Mol Cells 9:31–36PubMedGoogle Scholar
  69. Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM (2006) A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293 T cells. Gene 366:97–103PubMedCrossRefGoogle Scholar
  70. Gorlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767–778PubMedCrossRefGoogle Scholar
  71. Gotte G, Testolin L, Costanzo C, Sorrentino S, Armato U, Libonati M (1997) Cross-linked trimers of bovine ribonuclease A: activity on double-stranded RNA and antitumor action. FEBS Lett 415:308–312PubMedCrossRefGoogle Scholar
  72. Grabarek J, Ardelt B, Du L, Darzynkiewicz Z (2002) Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase). Exp Cell Res 278:61–71PubMedCrossRefGoogle Scholar
  73. Gurova K (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5:1685–1704PubMedCrossRefGoogle Scholar
  74. Haigis MC, Raines RT (2003) Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J Cell Sci 116:313–324PubMedCrossRefGoogle Scholar
  75. Haigis MC, Kurten EL, Abel RL, Raines RT (2002) KFERQ sequence in ribonuclease A-mediated cytotoxicity. J Biol Chem 277:11576–11581PubMedCrossRefGoogle Scholar
  76. Haigis MC, Kurten EL, Raines RT (2003) Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 31:1024–1032PubMedCrossRefGoogle Scholar
  77. Halicka HD, Murakami T, Papageorgio CN, Mittelman A, Mikulski SM, Shogen K, Darzynkiewicz Z (2000) Induction of differentiation of leukaemic (HL-60) or prostate cancer (LNCaP, JCA-1) cells potentiates apoptosis triggered by onconase. Cell Prolif 33:407–417PubMedCrossRefGoogle Scholar
  78. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134PubMedCrossRefGoogle Scholar
  79. Ilinskaya ON, Dreyer F, Mitkevich VA, Shaw KL, Pace CN, Makarov AA (2002) Changing the net charge from negative to positive makes ribonuclease Sa cytotoxic. Protein Sci 11:2522–2525PubMedCrossRefGoogle Scholar
  80. Ilinskaya ON, Koschinski A, Mitkevich VA, Repp H, Dreyer F, Pace CN, Makarov AA (2004) Cytotoxicity of RNases is increased by cationization and counteracted by K(Ca) channels. Biochem Biophys Res Commun 314:550–554PubMedCrossRefGoogle Scholar
  81. Iordanov MS, Wong J, Newton DL, Rybak SM, Bright RK, Flavell RA, Davis RJ, Magun BE (2000a) Differential requirement for the stress-activated protein kinase/c-Jun NH(2)-terminal kinase in RNAdamage-induced apoptosis in primary and in immortalized fibroblasts. Mol Cell Biol Res Commun 4:122–128PubMedCrossRefGoogle Scholar
  82. Iordanov MS, Ryabinina OP, Wong J, Dinh TH, Newton DL, Rybak SM, Magun BE (2000b) Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 60:1983–1994PubMedGoogle Scholar
  83. Irie M (1997) RNase T1/RNaseT2 family RNases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 101–130CrossRefGoogle Scholar
  84. Irie M, Nitta K, Nonaka T (1998) Biochemistry of frog ribonucleases. Cell Mol Life Sci 54:775–784PubMedCrossRefGoogle Scholar
  85. Ita M, Halicka HD, Tanaka T, Kurose A, Ardelt B, Shogen K, Darzynkiewicz Z (2008) Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther 7:1104–1108PubMedCrossRefGoogle Scholar
  86. Iwama M, Ogawa Y, Sasaki N, Nitta K, Takayanagi Y, Ohgi K, Tsuji T, Irie M (2001) Effect of modification of the carboxyl groups of the sialic acid binding lectin from bullfrog (Rana catesbeiana) oocyte on anti-tumor activity. Biol Pharm Bull 24:978–981PubMedCrossRefGoogle Scholar
  87. Jinno H, Ueda M, Ozawa S, Kikuchi K, Ikeda T, Enomoto K, Kitajima M (1996a) Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines–a trial for less immunogenic chimeric toxin. Cancer Chemother Pharmacol 38:303–308PubMedCrossRefGoogle Scholar
  88. Jinno H, Ueda M, Ozawa S, Ikeda T, Enomoto K, Psarras K, Kitajima M, Yamada H, Seno M (1996b) Epidermal growth factor receptor-dependent cytotoxicity for human squamous carcinoma cell lines of a conjugate composed of human EGF and RNase 1. Life Sci 58:1901–1908PubMedCrossRefGoogle Scholar
  89. Jinno H, Ueda M, Ozawa S, Ikeda T, Kitajima M, Maeda T, Seno M (2002) The cytotoxicity of a conjugate composed of human epidermal growth factor and eosinophil cationic protein. Anticancer Res 22:4141–4145PubMedGoogle Scholar
  90. Johnson VG, Wrobel C, Wilson D, Zovickian J, Greenfield L, Oldfield EH, Youle R (1989) Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J Neurosurg 70:240–248PubMedCrossRefGoogle Scholar
  91. Johnson RJ, Chao TY, Lavis LD, Raines RT (2007a) Cytotoxic ribonucleases: the dichotomy of Coulombic forces. Biochemistry 46:10308–10316PubMedCrossRefGoogle Scholar
  92. Johnson RJ, McCoy JG, Bingman CA, Phillips GN Jr, Raines RT (2007b) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 368:434–449PubMedCrossRefGoogle Scholar
  93. Juan G, Ardelt B, Li X, Mikulski SM, Shogen K, Ardelt W, Mittelman A, Darzynkiewicz Z (1998) G1 arrest of U937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia 12:1241–1248PubMedCrossRefGoogle Scholar
  94. Kim JS, Soucek J, Matousek J, Raines RT (1995a) Mechanism of ribonuclease cytotoxicity. J Biol Chem 270:31097–31102PubMedCrossRefGoogle Scholar
  95. Kim JS, Soucek J, Matousek J, Raines RT (1995b) Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem J 308(Pt 2):547–550PubMedGoogle Scholar
  96. Kim BM, Kim H, Raines RT, Lee Y (2004) Glycosylation of onconase increases its conformational stability and toxicity for cancer cells. Biochem Biophys Res Commun 315:976–983PubMedCrossRefGoogle Scholar
  97. Kim DH, Kim EJ, Kalota A, Gewirtz AM, Glickson J, Shogen K, Lee I (2007) Possible mechanisms of improved radiation response by cytotoxic RNase, Onconase, on A549 human lung cancer xenografts of nude mice. Adv Exp Med Biol 599:53–59PubMedCrossRefGoogle Scholar
  98. Klink TA, Raines RT (2000) Conformational stability is a determinant of ribonuclease A cytotoxicity. J Biol Chem 275:17463–17467PubMedCrossRefGoogle Scholar
  99. Kobe B, Deisenhofer J (1996) Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J Mol Biol 264:1028–1043PubMedCrossRefGoogle Scholar
  100. Kotchetkov R, Cinatl J, Krivtchik AA, Vogel JU, Matousek J, Pouckova P, Kornhuber B, Schwabe D, Cinatl J Jr (2001) Selective activity of BS-RNase against anaplastic thyroid cancer. Anticancer Res 21:1035–1042PubMedGoogle Scholar
  101. Krauss J, Arndt MA, Vu BK, Newton DL, Rybak SM (2005a) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 128:602–609PubMedCrossRefGoogle Scholar
  102. Krauss J, Arndt MA, Vu BK, Newton DL, Seeber S, Rybak SM (2005b) Efficient killing of CD22+ tumor cells by a humanized diabody-RNase fusion protein. Biochem Biophys Res Commun 331:595–602PubMedCrossRefGoogle Scholar
  103. Laurents DV, Bruix M, Jimenez MA, Santoro J, Boix E, Moussaoui M, Nogues MV, Rico M (2009) The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Biopolymers 91:1018–1028PubMedCrossRefGoogle Scholar
  104. Ledoux L (1955a) Action of ribonuclease on two solid tumours in vivo. Nature 176:36–37PubMedCrossRefGoogle Scholar
  105. Ledoux L (1955b) Action of ribonuclease on certain ascites tumours. Nature 175:258–259PubMedCrossRefGoogle Scholar
  106. Ledoux L (1956) Action of ribonuclease on neoplastic growth. II. Action on Landschutz ascites cells in vitro. Biochim Biophys Acta 20:369–377PubMedCrossRefGoogle Scholar
  107. Ledoux L, Baltus E (1954) The effects of ribonuclease on cells of Ehrlich carcinoma. Experientia 10:500–501PubMedCrossRefGoogle Scholar
  108. Ledoux L, Revell SH (1955) Action of ribonuclease on neoplastic growth. I. Chemical aspects of normal tumour growth: the Landschutz ascites tumour. Biochim Biophys Acta 18:416–426PubMedCrossRefGoogle Scholar
  109. Lee I (2008) Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 8:813–827PubMedCrossRefGoogle Scholar
  110. Lee JE, Raines RT (2003) Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry 42:11443–11450PubMedCrossRefGoogle Scholar
  111. Lee JE, Raines RT (2005) Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry 44:15760–15767PubMedCrossRefGoogle Scholar
  112. Lee JE, Raines RT (2008) Ribonucleases as novel chemotherapeutics: the ranpirnase example. BioDrugs 22:53–58PubMedCrossRefGoogle Scholar
  113. Lee I, Shogen K (2008) Mechanisms of enhanced tumoricidal efficacy of multiple small dosages of ranpirnase, the novel cytotoxic ribonuclease, on lung cancer. Cancer Chemother Pharmacol 62:337–346PubMedCrossRefGoogle Scholar
  114. Lee I, Lee YH, Mikulski SM, Lee J, Covone K, Shogen K (2000a) Tumoricidal effects of onconase on various tumors. J Surg Oncol 73:164–171PubMedCrossRefGoogle Scholar
  115. Lee I, Lee YH, Mikulski SM, Lee J, Shogen K (2000b) Enhanced cellular radiation sensitivity of androgen-independent human prostate tumor cells by onconase. Anticancer Res 20:1037–1040PubMedGoogle Scholar
  116. Lee I, Lee YH, Mikulski SM, Shogen K (2003) Effect of ONCONASE +/− tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol 530:187–196PubMedCrossRefGoogle Scholar
  117. Lee I, Kalota A, Gewirtz AM, Shogen K (2007a) Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res 27:299–307PubMedGoogle Scholar
  118. Lee I, Kim DH, Sunar U, Magnitsky S, Shogen K (2007b) The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer. In Vivo 21:721–728PubMedGoogle Scholar
  119. Lee JE, Bae E, Bingman CA, Phillips GN Jr, Raines RT (2008) Structural basis for catalysis by onconase. J Mol Biol 375:165–177PubMedCrossRefGoogle Scholar
  120. Leich F, Koditz J, Ulbrich-Hofman R, Arnold U (2006) Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity. J Mol Biol 358:1305–1313PubMedCrossRefGoogle Scholar
  121. Leich F, Stohr N, Rietz A, Ulbrich-Hofmann R, Arnold U (2007) Endocytotic internalization as a crucial factor for the cytotoxicity of ribonucleases. J Biol Chem 282:27640–27646PubMedCrossRefGoogle Scholar
  122. Leland PA, Raines RT (2001) Cancer chemotherapy–ribonucleases to the rescue. Chem Biol 8:405–413PubMedCrossRefGoogle Scholar
  123. Leland PA, Schultz LW, Kim BM, Raines RT (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci USA 95:10407–10412PubMedCrossRefGoogle Scholar
  124. Leland PA, Staniszewski KE, Kim B, Raines RT (2000) A synapomorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease. FEBS Lett 477:203–207PubMedCrossRefGoogle Scholar
  125. Leland PA, Staniszewski KE, Kim BM, Raines RT (2001) Endowing human pancreatic ribonuclease with toxicity for cancer cells. J Biol Chem 276:43095–43102PubMedCrossRefGoogle Scholar
  126. Li WM, Barnes T, Lee CH (2010) Endoribonucleases–enzymes gaining spotlight in mRNA metabolism. FEBS J 277:627–641PubMedCrossRefGoogle Scholar
  127. Libonati M (2004) Biological actions of the oligomers of ribonuclease A. Cell Mol Life Sci 61:2431–2436PubMedCrossRefGoogle Scholar
  128. Libonati M, Floridi A (1969) Breakdown of double-stranded RNA by bull semen ribonuclease. Eur J Biochem 8:81–87PubMedCrossRefGoogle Scholar
  129. Libonati M, Sorrentino S, Galli R, La Montagna R, Di Donato A (1975) Degradation of DNA. RNA hybrids by aggregates of pancreatic ribonuclease. Biochim Biophys Acta 407:292–298PubMedCrossRefGoogle Scholar
  130. Libonati M, Gotte G, Vottariello F (2008) A novel biological actions acquired by ribonuclease through oligomerization. Curr Pharm Biotechnol 9:200–209PubMedCrossRefGoogle Scholar
  131. Lin JJ, Newton DL, Mikulski SM, Kung HF, Youle RJ, Rybak SM (1994) Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Biochem Biophys Res Commun 204:156–162PubMedCrossRefGoogle Scholar
  132. Lipovova P, Podzimek T, Orctova L, Matousek J, Pouckova P, Soucek J (2008) Antitumor and biological effects of black pine (pinus nigra) pollen nuclease. Neoplasma 55:158–164PubMedGoogle Scholar
  133. Los M (2009) New, exciting developments in experimental therapies in the early 21st century. Eur J Pharmacol 625:1–5PubMedCrossRefGoogle Scholar
  134. Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anticancer Drugs 19:931–939PubMedCrossRefGoogle Scholar
  135. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270PubMedCrossRefGoogle Scholar
  136. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M (2002a) Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269:307–316PubMedCrossRefGoogle Scholar
  137. Maeda T, Mahara K, Kitazoe M, Futami J, Takidani A, Kosaka M, Tada H, Seno M, Yamada H (2002b) RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J Biochem 132:737–742PubMedCrossRefGoogle Scholar
  138. Makarov AA, Ilinskaya ON (2003) Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett 540:15–20PubMedCrossRefGoogle Scholar
  139. Makarov AA, Kolchinsky A, Ilinskaya ON (2008) Binase and other microbial RNases as potential anticancer agents. Bioessays 30:781–790PubMedCrossRefGoogle Scholar
  140. Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX, Coll M (2000) Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. J Mol Biol 300:1297–1307PubMedCrossRefGoogle Scholar
  141. Mancheno JM, Gasset M, Onaderra M, Gavilanes JG, D’Alessio G (1994) Bovine seminal ribonuclease destabilizes negatively charged membranes. Biochem Biophys Res Commun 199:119–124PubMedCrossRefGoogle Scholar
  142. Marinov I, Soucek J (2000) Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines. Neoplasma 47:294–298PubMedGoogle Scholar
  143. Mastronicola MR, Piccoli R, D’Alessio G (1995) Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease. Eur J Biochem 230:242–249PubMedCrossRefGoogle Scholar
  144. Matousek J (2001) Ribonucleases and their antitumor activity. Comp Biochem Physiol C Toxicol Pharmacol 129:175–191PubMedCrossRefGoogle Scholar
  145. Matousek J (2010) Plant ribonucleases and nucleases as antiproliferative agents targeting human tumors growing in mice. Recent Pat DNA Gene Seq 4:29–39PubMedCrossRefGoogle Scholar
  146. Matousek J, Gotte G, Pouckova P, Soucek J, Slavik T, Vottariello F, Libonati M (2003) Antitumor activity and other biological actions of oligomers of ribonuclease A. J Biol Chem 278:23817–23822PubMedCrossRefGoogle Scholar
  147. Matousek J, Podzimek T, Pouckova P, Stehlik J, Skvor J, Lipovova P (2010) Antitumor activity of apoptotic nuclease TBN1 from L. esculentum. Neoplasma 57:339–348PubMedCrossRefGoogle Scholar
  148. Mazzarella L, Capasso S, Demasi D, Di Lorenzo G, Mattia CA, Zagari A (1993) Bovine seminal ribonuclease: structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr 49:389–402PubMedCrossRefGoogle Scholar
  149. Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37:668–678PubMedCrossRefGoogle Scholar
  150. Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111:3830–3837PubMedCrossRefGoogle Scholar
  151. Merlino A, Avella G, Di Gaetano S, Arciello A, Piccoli R, Mazzarella L, Sica F (2009) Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant. Protein Sci 18:50–57PubMedGoogle Scholar
  152. Messmann RA, Vitetta ES, Headlee D, Senderowicz AM, Figg WD, Schindler J, Michiel DF, Creekmore S, Steinberg SM, Kohler D, Jaffe ES, Stetler-Stevenson M, Chen H, Ghetie V, Sausville EA (2000) A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res 6:1302–1313PubMedGoogle Scholar
  153. Michaelis M, Cinatl J, Anand P, Rothweiler F, Kotchetkov R, von Deimling A, Doerr HW, Shogen K, Cinatl J Jr (2007) Onconase induces caspase-independent cell death in chemoresistant neuroblastoma cells. Cancer Lett 250:107–116PubMedCrossRefGoogle Scholar
  154. Mikulski SM, Viera A, Ardelt W, Menduke H, Shogen K (1990a) Tamoxifen and trifluoroperazine (Stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumor activity. Cell Tissue Kinet 23:237–246PubMedGoogle Scholar
  155. Mikulski SM, Ardelt W, Shogen K, Bernstein EH, Menduke H (1990b) Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J Natl Cancer Inst 82:151–153PubMedCrossRefGoogle Scholar
  156. Mikulski SM, Viera A, Shogen K (1992a) In vitro synergism between a novel amphibian oocytic ribonuclease (ONCONASE) and tamoxifen, lovastatin and cisplatin, in human OVCAR-3 ovarian carcinoma cell line. Int J Oncol 1:779–785PubMedGoogle Scholar
  157. Mikulski SM, Viera A, Darzynkiewicz Z, Shogen K (1992b) Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br J Cancer 66:304–310PubMedCrossRefGoogle Scholar
  158. Mikulski SM, Viera A, Shogen K (1993a) Human tumor cell growth modulatory effects of the AEBS/HIC-binding drugs. Int J Oncol 2:807–813PubMedGoogle Scholar
  159. Mikulski SM, Grossman A, Carter P, Shogen K, Costanzi J (1993b) Phase I human clinical trial of ONCONASE (P-30 protein) administered intravenously on a weekly schedule in cancer patients with solid tumors. Int J Oncol 3:8Google Scholar
  160. Mikulski SM, Chun H, Mittelman A, Panella T, Puccio C, Shogen K, Costanzi J (1995) Relationship between response rate and median survival in patients with advanced non-small cell lung cancer: comparison of ONCONASE® with other anticancer agents. Int J Oncol 6:889–897PubMedGoogle Scholar
  161. Mikulski SM, Viera A, Deptala A, Darzynkiewicz Z (1998) Enhanced in vitro cytotoxicity and cytostasis of the combination of onconase with a proteasome inhibitor. Int J Oncol 13:633–644PubMedGoogle Scholar
  162. Mikulski SM, Newton DL, Wiltrout RH, Rybak SM (1999) A new anticancer RNase (onconase): clinical trial in patients (pts) with breast cancer (BC). Proc Am Assoc Cancer Res (AACR) 40: Abstract 3246Google Scholar
  163. Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, Mittelman A, Panella T, Puccio C, Fine R, Shogen K (2002) Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol 20:274–281PubMedCrossRefGoogle Scholar
  164. Monti DM, D’Alessio G (2004) Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity. J Biol Chem 279:39195–39198PubMedCrossRefGoogle Scholar
  165. Mosimann SC, Ardelt W, James MN (1994) Refined 1.7 A X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity. J Mol Biol 236:1141–1153PubMedCrossRefGoogle Scholar
  166. Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139:801–805PubMedGoogle Scholar
  167. Murthy BS, Sirdeshmukh R (1992) Sensitivity of monomeric and dimeric forms of bovine seminal ribonuclease to human placental ribonuclease inhibitor. Biochem J 281(Pt 2):343–348PubMedGoogle Scholar
  168. Murthy BS, De Lorenzo C, Piccoli R, D’Alessio G, Sirdeshmukh R (1996) Effects of protein RNase inhibitor and substrate on the quaternary structures of bovine seminal RNase. Biochemistry 35:3880–3885PubMedCrossRefGoogle Scholar
  169. Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, Nogues MV (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 65:324–337PubMedCrossRefGoogle Scholar
  170. Navarro S, Boix E, Cuchillo CM, Nogues MV (2010) Eosinophil-induced neurotoxicity: the role of eosinophil cationic protein/RNase 3. J Neuroimmunol 227:60–70PubMedCrossRefGoogle Scholar
  171. Newton DL, Ilercil O, Laske DW, Oldfield E, Rybak SM, Youle RJ (1992) Cytotoxic ribonuclease chimeras. Targeted tumoricidal activity in vitro and in vivo. J Biol Chem 267:19572–19578PubMedGoogle Scholar
  172. Newton DL, Nicholls PJ, Rybak SM, Youle RJ (1994) Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem 269:26739–26745PubMedGoogle Scholar
  173. Newton DL, Pearson JW, Xue Y, Smith MR, Fogler WE, Mikulski SM, Alvord WG, Kung H-F, Longo DL, Rybak SM (1996) Anti-tumor ribonuclease combined with or conjugated to monoclonal antibody MRK16 overcomes multidrug resistance to vincristine in vitro and in vivo. Int J Oncol 8:1095–1104PubMedGoogle Scholar
  174. Newton DL, Boque L, Wlodawer A, Huang CY, Rybak SM (1998) Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties. Biochemistry 37:5173–5183PubMedCrossRefGoogle Scholar
  175. Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, Williams J, Hoogenboom HR, Raus JC, Meade HM, Rybak SM (1999) Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods 231:159–167PubMedCrossRefGoogle Scholar
  176. Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM (2001) Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood 97:528–535PubMedCrossRefGoogle Scholar
  177. Ng TB (2004) Peptides and proteins from fungi. Peptides 25:1055–1073PubMedCrossRefGoogle Scholar
  178. Nikolovski Z, Buzon V, Ribo M, Moussaoui M, Vilanova M, Cuchillo CM, Cladera J, Nogues MV (2006) Thermal unfolding of eosinophil cationic protein/ribonuclease 3: a nonreversible process. Protein Sci 15:2816–2827PubMedCrossRefGoogle Scholar
  179. Nitta K, Ozaki K, Ishikawa M, Furusawa S, Hosono M, Kawauchi H, Sasaki K, Takayanagi Y, Tsuiki S, Hakomori S (1994) Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res 54:920–927PubMedGoogle Scholar
  180. Notomista E, Catanzano F, Graziano G, Dal Piaz F, Barone G, D’Alessio G, Di Donato A (2000) Onconase: an unusually stable protein. Biochemistry 39:8711–8718PubMedCrossRefGoogle Scholar
  181. Notomista E, Catanzano F, Graziano G, Di Gaetano S, Barone G, Di Donato A (2001) Contribution of chain termini to the conformational stability and biological activity of onconase. Biochemistry 40:9097–9103PubMedCrossRefGoogle Scholar
  182. Notomista E, Mancheno JM, Crescenzi O, Di Donato A, Gavilanes J, D’Alessio G (2006) The role of electrostatic interactions in the antitumor activity of dimeric RNases. FEBS J 273:3687–3697PubMedCrossRefGoogle Scholar
  183. Ogawa Y, Iwama M, Ohgi K, Tsuji T, Irie M, Itagaki T, Kobayashi H, Inokuchi N (2002) Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. Biol Pharm Bull 25:722–727PubMedCrossRefGoogle Scholar
  184. Okabe Y, Katayama N, Iwama M, Watanabe H, Ohgi K, Irie M, Nitta K, Kawauchi H, Takayanagi Y, Oyama F et al (1991) Comparative base specificity, stability, and lectin activity of two lectins from eggs of Rana catesbeiana and R. japonica and liver ribonuclease from R. catesbeiana. J Biochem 109:786–790PubMedGoogle Scholar
  185. Olmo N, Turnay J, Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA (2001) Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem 268:2113–2123PubMedCrossRefGoogle Scholar
  186. Pastan I, Willingham MC, FitzGerald DJ (1986) Immunotoxins. Cell 47:641–648PubMedCrossRefGoogle Scholar
  187. Pavlakis N, Vogelzang NJ (2006) Ranpirnase–an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 6:391–399PubMedCrossRefGoogle Scholar
  188. Piccoli R, Di Donato A, D’Alessio G (1988) Co-operativity in seminal ribonuclease function. Kinetic studies. Biochem J 253:329–336PubMedGoogle Scholar
  189. Piccoli R, Tamburrini M, Piccialli G, Di Donato A, Parente A, D’Alessio G (1992) The dual-mode quaternary structure of seminal RNase. Proc Natl Acad Sci USA 89:1870–1874PubMedCrossRefGoogle Scholar
  190. Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J, Matousek J, D’Alessio G (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci USA 96:7768–7773PubMedCrossRefGoogle Scholar
  191. Porta C, Paglino C, Mutti L (2008) Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics 2:601–609PubMedGoogle Scholar
  192. Pouckova P, Morbio M, Vottariello F, Laurents DV, Matousek J, Soucek J, Gotte G, Donadelli M, Costanzo C, Libonati M (2007) Cytotoxicity of polyspermine-ribonuclease A and polyspermine-dimeric ribonuclease A. Bioconjug Chem 18:1946–1955PubMedCrossRefGoogle Scholar
  193. Pradeep L, Shin HC, Scheraga HA (2006) Correlation of folding kinetics with the number and isomerization states of prolines in three homologous proteins of the RNase family. FEBS Lett 580:5029–5032PubMedCrossRefGoogle Scholar
  194. Psarras K, Ueda M, Yamamura T, Ozawa S, Kitajima M, Aiso S, Komatsu S, Seno M (1998) Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human ‘immunotoxin analog’ with cytotoxic properties against squamous cell carcinomas. Protein Eng 11:1285–1292PubMedCrossRefGoogle Scholar
  195. Psarras K, Ueda M, Tanabe M, Kitajima M, Aiso S, Komatsu S, Seno M (2000) Targeting activated lymphocytes with an entirely human immunotoxin analogue: human pancreatic RNase1-human IL-2 fusion. Cytokine 12:786–790PubMedCrossRefGoogle Scholar
  196. Puccio C, Mittelman A, Chun H, Costanzi J, Panella T, Coombe N, Shogen K, Mikulski S (1996) A new anticancer RNase (onconase): clinical trial in patients (pts) with breast cancer (BC). Proc Am Soc Clin Oncol (ASCO) 15: Abstract 242Google Scholar
  197. Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1066PubMedCrossRefGoogle Scholar
  198. Ramos-Nino ME (2007) Cytotoxic ribonuclease-based cancer therapies. Drugs Future 32:10CrossRefGoogle Scholar
  199. Ramos-Nino ME, Littenberg B (2008) A novel combination: ranpirnase and rosiglitazone induce a synergistic apoptotic effect by down-regulating Fra-1 and Survivin in cancer cells. Mol Cancer Ther 7:1871–1879PubMedCrossRefGoogle Scholar
  200. Ramos-Nino ME, Vianale G, Sabo-Attwood T, Mutti L, Porta C, Heintz N, Mossman BT (2005) Human mesothelioma cells exhibit tumor cell-specific differences in phosphatidylinositol 3-kinase/AKT activity that predict the efficacy of Onconase. Mol Cancer Ther 4:835–842PubMedCrossRefGoogle Scholar
  201. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140PubMedGoogle Scholar
  202. Riccio G, Borriello M, D’Alessio G, De Lorenzo C (2008) A novel human antitumor dimeric immunoRNase. J Immunother 31:440–445PubMedCrossRefGoogle Scholar
  203. Rodriguez M, Benito A, Tubert P, Castro J, Ribo M, Beaumelle B, Vilanova M (2006) A cytotoxic ribonuclease variant with a discontinuous nuclear localization signal constituted by basic residues scattered over three areas of the molecule. J Mol Biol 360:548–557PubMedCrossRefGoogle Scholar
  204. Rodriguez M, Torrent G, Bosch M, Rayne F, Dubremetz JF, Ribo M, Benito A, Vilanova M, Beaumelle B (2007) Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci 120:1405–1411PubMedCrossRefGoogle Scholar
  205. Rosenberg HF (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270:7876–7881PubMedCrossRefGoogle Scholar
  206. Roth JS (1963) Ribonuclease activity and cancer: a review. Cancer Res 23:657–666PubMedGoogle Scholar
  207. Roth JS, Juster H (1972) On the absence of ribonuclease inhibitor in rat liver nuclei. Biochim Biophys Acta 287:474–476PubMedCrossRefGoogle Scholar
  208. Russo N, Antignani A, D’Alessio G (2000) In vitro evolution of a dimeric variant of human pancreatic ribonuclease. Biochemistry 39:3585–3591PubMedCrossRefGoogle Scholar
  209. Rutkoski TJ, Raines RT (2008) Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr Pharm Biotechnol 9:185–189PubMedCrossRefGoogle Scholar
  210. Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT (2005) Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 354:41–54PubMedCrossRefGoogle Scholar
  211. Rutkoski TJ, Kink JA, Strong LE, Schilling CI, Raines RT (2010) Antitumor activity of ribonuclease multimers created by site-specific covalent tethering. Bioconjug Chem 21:1691–1702PubMedCrossRefGoogle Scholar
  212. Rybak SM (2008) Antibody-onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol 9:226–230PubMedCrossRefGoogle Scholar
  213. Rybak SM, Newton DL (2007) Immunotoxins and beyond: targeted RNases. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, pp 379–410CrossRefGoogle Scholar
  214. Rybak SM, Saxena SK, Ackerman EJ, Youle RJ (1991) Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem 266:21202–21207PubMedGoogle Scholar
  215. Rybak SM, Hoogenboom HR, Meade HM, Raus JC, Schwartz D, Youle RJ (1992) Humanization of immunotoxins. Proc Natl Acad Sci USA 89:3165–3169PubMedCrossRefGoogle Scholar
  216. Rybak SM, Newton DL, Mikulski SM, Viera A, Youle RJ (1993) Cytotoxic onconase and ribonuclease A chimeras: comparison and in vitro characterization. Drug Deliv 1:3–10CrossRefGoogle Scholar
  217. Rybak SM, Pearson JW, Fogler WE, Volker K, Spence SE, Newton DL, Mikulski SM, Ardelt W, Riggs CW, Kung HF, Longo DL (1996) Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst 88:747–753PubMedCrossRefGoogle Scholar
  218. Sakakibara F, Kawauchi H, Takayanagi G, Ise H (1979) Egg lectin of Rana japonica and its receptor glycoprotein of Ehrlich tumor cells. Cancer Res 39:1347–1352PubMedGoogle Scholar
  219. Saxena SK, Shogen K, Ardelt W (2003) Onconase and its therapeutic potential. Lab Med 34:380–386CrossRefGoogle Scholar
  220. Saxena A, Saxena SK, Shogen K (2009) Effect of Onconase on double-stranded RNA in vitro. Anticancer Res 29:1067–1071PubMedGoogle Scholar
  221. Schirrmann T, Krauss J, Arndt MA, Rybak SM, Dubel S (2009) Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 9:79–95PubMedCrossRefGoogle Scholar
  222. Schulenburg C, Weininger U, Neumann P, Meiselbach H, Stubbs MT, Sticht H, Balbach J, Ulbrich-Hofmann R, Arnold U (2010) Impact of the C-terminal disulfide bond on the folding and stability of onconase. Chembiochem 11:978–986PubMedCrossRefGoogle Scholar
  223. Sevcik J, Urbanikova L, Leland PA, Raines RT (2002) X-ray structure of two crystalline forms of a Streptomyces ribonuclease with cytotoxic activity. J Biol Chem 277:47325–47330PubMedCrossRefGoogle Scholar
  224. Sinatra F, Callari D, Viola M, Longombardo MT, Patania M, Litrico L, Emmanuele G, Lanteri E, D’Alessandro N, Travali S (2000) Bovine seminal RNase induces apoptosis in normal proliferating lymphocytes. Int J Clin Lab Res 30:191–196PubMedCrossRefGoogle Scholar
  225. Singh UP, Ardelt W, Saxena SK, Holloway DE, Vidunas E, Lee HS, Saxena A, Shogen K, Acharya KR (2007) Enzymatic and structural characterisation of amphinase, a novel cytotoxic ribonuclease from Rana pipiens oocytes. J Mol Biol 371:93–111PubMedCrossRefGoogle Scholar
  226. Skvor J, Lipovova P, Pouckova P, Soucek J, Slavik T, Matousek J (2006) Effect of wheat leaf ribonuclease on tumor cells and tissues. Anticancer Drugs 17:815–823PubMedCrossRefGoogle Scholar
  227. Slager J, Tyler B, Shikanov A, Domb AJ, Shogen K, Sidransky D, Brem H (2009) Local controlled delivery of anti-neoplastic RNAse to the brain. Pharm Res 26:1838–1846PubMedCrossRefGoogle Scholar
  228. Smith MR, Newton DL, Mikulski SM, Rybak SM (1999) Cell cycle-related differences in susceptibility of NIH/3 T3 cells to ribonucleases. Exp Cell Res 247:220–232PubMedCrossRefGoogle Scholar
  229. Soucek J, Skvor J, Pouckova P, Matousek J, Slavik T (2006) Mung bean sprout (Phaseolus aureus) nuclease and its biological and antitumor effects. Neoplasma 53:402–409PubMedGoogle Scholar
  230. Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Arciello A, Garbi C, Piccoli R, D’Alessio G, Vecchio G, Laccetti P, Santoro M (2003) Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis. J Clin Endocrinol Metab 88:2900–2907PubMedCrossRefGoogle Scholar
  231. Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Piccoli R, Santoro M, D’Alessio G, Laccetti P, Vecchio G (2004) Highly selective toxic and proapoptotic effects of two dimeric ribonucleases on thyroid cancer cells compared to the effects of doxorubicin. Br J Cancer 90:270–277PubMedCrossRefGoogle Scholar
  232. Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293 T-cells. Protein Expr Purif 28:211–219PubMedCrossRefGoogle Scholar
  233. Suhasini AN, Sirdeshmukh R (2006) Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem 281:12201–12209PubMedCrossRefGoogle Scholar
  234. Suhasini AN, Sirdeshmukh R (2007) Onconase action on tRNA(Lys3), the primer for HIV-1 reverse transcription. Biochem Biophys Res Commun 363:304–309PubMedCrossRefGoogle Scholar
  235. Suzuki M, Saxena SK, Boix E, Prill RJ, Vasandani VM, Ladner JE, Sung C, Youle RJ (1999) Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Nat Biotechnol 17:265–270PubMedCrossRefGoogle Scholar
  236. Tafech A, Bassett T, Sparanese D, Lee CH (2006) Destroying RNA as a therapeutic approach. Curr Med Chem 13:863–881PubMedCrossRefGoogle Scholar
  237. Taniguchi T, Libonati M (1974) Action of ribonuclease BS-1 on a DNA-RNA hybrid. Biochem Biophys Res Commun 58:280–286PubMedCrossRefGoogle Scholar
  238. Tarnowski GS, Kassel RL, Mountain IM, Blackburn P, Wilson G, Wang D (1976) Comparison of antitumor activities of pancreatic ribonuclease and its cross-linked dimer. Cancer Res 36:4074–4078PubMedGoogle Scholar
  239. Telford IR, Kemp JF, Taylor EF, Yeaman MW (1959) Effect of ribonuclease on survival of ascites tumor bearing mice. Proc Soc Exp Biol Med 100:829–831PubMedGoogle Scholar
  240. Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 46:720–733PubMedCrossRefGoogle Scholar
  241. Torrent G, Benito A, Castro J, Ribo M, Vilanova M (2008) Contribution of the C30/C75 disulfide bond to the biological properties of onconase. Biol Chem 389:1127–1136PubMedCrossRefGoogle Scholar
  242. Torrent M, Nogues MV, Boix E (2011) Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. J Mol Recognit 24:90–100PubMedCrossRefGoogle Scholar
  243. Tsai SY, Ardelt B, Hsieh TC, Darzynkiewicz Z, Shogen K, Wu JM (2004) Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol 25:1745–1752PubMedGoogle Scholar
  244. Tubert P, Rodriguez M, Ribo M, Benito A, Vilanova M (2010) The nuclear transport capacity of a human-pancreatic ribonuclease variant is critical for its cytotoxicity. Invest New Drugs. doi: 10.1007/s10637-010-9426-2 PubMedGoogle Scholar
  245. Turcotte RF, Raines RT (2008) Interaction of onconase with the human ribonuclease inhibitor protein. Biochem Biophys Res Commun 377:512–514PubMedCrossRefGoogle Scholar
  246. Turcotte RF, Lavis LD, Raines RT (2009) Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J 276:3846–3857PubMedCrossRefGoogle Scholar
  247. Vasandani VM, Wu YN, Mikulski SM, Youle RJ, Sung C (1996) Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Cancer Res 56:4180–4186PubMedGoogle Scholar
  248. Vasandani VM, Burris JA, Sung C (1999a) Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol 44:164–169PubMedCrossRefGoogle Scholar
  249. Vasandani VM, Castelli JC, Hott JS, Saxena S, Mikulski SM, Youle RJ (1999b) Interferon enhances the activity of the anticancer ribonuclease, onconase. J Interferon Cytokine Res 19:447–454PubMedCrossRefGoogle Scholar
  250. Venge P, Bystrom J (1998) Eosinophil cationic protein (ECP). Int J Biochem Cell Biol 30:433–437PubMedCrossRefGoogle Scholar
  251. Vescia S, Tramontano D, Augusti-Tocco G, D’Alessio G (1980) In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease. Cancer Res 40:3740–3744PubMedGoogle Scholar
  252. Viola M, Libra M, Callari D, Sinatra F, Spada D, Noto D, Emmanuele G, Romano F, Averna M, Pezzino FM, Stivala F, Travali S (2005) Bovine seminal ribonuclease is cytotoxic for both malignant and normal telomerase-positive cells. Int J Oncol 27:1071–1077PubMedGoogle Scholar
  253. Vogelzang NJ, Aklilu M, Stadler WM, Dumas MC, Mikulski SM (2001) A phase II trial of weekly intravenous ranpirnase (Onconase), a novel ribonuclease in patients with metastatic kidney cancer. Invest New Drugs 19:255–260PubMedCrossRefGoogle Scholar
  254. Wong JH, Ng TB, Cheung RC, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PH, Xia LX, Ye XY, Jiang Y, Liu F (2010) Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 87:1221–1235PubMedCrossRefGoogle Scholar
  255. Woo JH, Liu JS, Kang SH, Singh R, Park SK, Su Y, Ortiz J, Neville DM Jr, Willingham MC, Frankel AE (2008) GMP production and characterization of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1) for phase I/II clinical trials. Protein Expr Purif 58:1–11PubMedCrossRefGoogle Scholar
  256. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  257. Wu Y, Mikulski SM, Ardelt W, Rybak SM, Youle RJ (1993) A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem 268:10686–10693PubMedGoogle Scholar
  258. Wu Y, Saxena SK, Ardelt W, Gadina M, Mikulski SM, De Lorenzo C, D’Alessio G, Youle RJ (1995) A study of the intracellular routing of cytotoxic ribonucleases. J Biol Chem 270:17476–17481PubMedCrossRefGoogle Scholar
  259. Yoon JM, Han SH, Kown OB, Kim SH, Park MH, Kim BK (1999) Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci 64:1435–1445PubMedCrossRefGoogle Scholar
  260. Yoshida H (2001) The ribonuclease T1 family. Methods Enzymol 341:28–41PubMedCrossRefGoogle Scholar
  261. Youle RJ, D’Alessio G (1997) Antitumor RNases. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and function. Academic, New York, pp 491–514CrossRefGoogle Scholar
  262. Zhao H, Ardelt B, Ardelt W, Shogen K, Darzynkiewicz Z (2008) The cytotoxic ribonuclease onconase targets RNA interference (siRNA). Cell Cycle 7:3258–3261PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de CiènciesUniversitat de GironaGironaSpain
  2. 2.Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi)GironaSpain

Personalised recommendations