Ellipse Constraints for Improved Wide-Baseline Feature Matching and Reconstruction

  • Dominik Rueß
  • Ralf Reulke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6636)


The classic feature matching process has two drawbacks. Firstly, ambiguous but possibly correct matches will potentially be removed and secondly, there is no constraint for the 2D size of the features.

In the present paper these drawbacks are tackled at once with a different approach: by considering region features instead of point features and by adding constraints based on the features’ shape. Here, the shape will be described with an ellipse. Using existing knowledge about the algebraic properties of ellipses within the computer vision domain, this enables additional constraints such as ellipse tangents. The number of ambiguous matches is reduced and increased control of the physical 2D size of the features is obtained. This will be shown on known epipolar geometry.

Additionally, reconstruction of feature ellipses is examined.


Key Points Feature Regions Ellipses Feature Matching Epipolar Constraints Reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, D.: Close range camera calibration. Photogrammetric Engineering 37, 855–866 (1971)Google Scholar
  2. 2.
    Cross, G.: Surface Reconstruction from Image Sequences. PhD thesis, University of Oxford (2000)Google Scholar
  3. 3.
    Cross, G., Zisserman, A.: Quadric reconstruction from dual-space geometry. In: Sixth International Conference on Computer Vision, pp. 25–31 (1998)Google Scholar
  4. 4.
    Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numerical Mathematics 34, 558–578 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kaminski, J., Shashua, A.: On calibration and reconstruction from planar curves. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 678–694. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Kaminski, J., Shashua, A.: Multiple view geometry of general algebraic curves. IJCV 56, 195–219 (2004)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, vol. 2, p. 1150. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  9. 9.
    Ma, Y., Soatto, S., Košecká, J., Sastry, S.S.: An Invitation to 3-D Vision. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mai, F., Hung, Y., Chesi, G.: Projective reconstruction of ellipses from multiple images. Pattern Recognition 43, 545–556 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22, 761–767 (2002); British Machine Vision Computing CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  14. 14.
    Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Quan, L.: Conic reconstruction and correspondence from two views. PAMI 18, 151–160 (1996)CrossRefGoogle Scholar
  17. 17.
    Reulke, R., Meysel, F., Bauer, S.: Situation analysis and atypical event detection with multiple cameras and multi-object tracking. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Schmid, C., Zisserman, A.: The geometry and matching of lines and curves over multiple views. International Journal of Computer Vision 40, 199–233 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Semple, J., Kneebone, G.: Algebraic Projective Geometry. Oxford Classic Texts (1998)Google Scholar
  20. 20.
    Weisstein, E.W.: Ellipse. From MathWorld–A Wolfram Web Resource,
  21. 21.
    Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 892–899 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhou, H., Green, P.R., Wallace, A.M.: Estimation of epipolar geometry by linear mixed-effect modelling. Neurocomputing 72, 3881–3890 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dominik Rueß
    • 1
  • Ralf Reulke
    • 2
  1. 1.Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-GemeinschaftInstitut für Robotik und Mechatronik, Optische InformationssystemeBerlinGermany
  2. 2.Institut für Informatik, Computer VisionHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations