Synthesising Terminating Tableau Calculi for Relational Logics

(Invited Paper)
  • Renate A. Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6663)

Abstract

Tableau-based deduction is an active and well-studied area of several branches of logic and automated reasoning. In this paper we discuss the challenge of automatically generating tableau calculi from the semantic specification of logics, while guaranteeing soundness, completeness and termination, when possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate, P., Goré, R.: The Tableaux Work Bench. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 230–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Avellone, A., Miglioli, P., Moscato, U., Ornaghi, M.: Generalized tableau systems for intermediate propositional logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 43–61. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Babenyshev, S., Rybakov, V., Schmidt, R.A., Tishkovsky, D.: A tableau method for checking rule admissibility in S4. Electronic Notes in Theoretical Computer Science 262, 17–32 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods (2008) (manuscript)Google Scholar
  7. 7.
    Bolander, T., Bräuner, T.: Tableau-based decision procedures for hybrid logic. Journal of Logic and Computation 16(6), 737–763 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. Journal of Automated Reasoning (2010) (published online)Google Scholar
  9. 9.
    Brink, C., Britz, K., Schmidt, R.A.: Peirce algebras. Formal Aspects of Computing 6(3), 339–358 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Bry, F., Manthey, R.: Proving finite satisfiability of deductive databases. In: Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1987. LNCS, vol. 329, pp. 44–55. Springer, Heidelberg (1988)Google Scholar
  11. 11.
    Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfiability. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Fariñas del Cerro, L., Gasquet, O.: A general framework for pattern-driven modal tableaux. Logic Journal of the IGPL 10(1), 51–83 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cialdea Mayer, M., Cerrito, S.: Nominal substitution at work with the global and converse modalities. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 57–74. College Publications (2010)Google Scholar
  14. 14.
    Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: Logical tableaux research engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  16. 16.
    Heuerding, A.: Sequent calculi for proof search in some modal logics. PhD thesis, Universität Bern (1998)Google Scholar
  17. 17.
    Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of Automated Reasoning 39(3), 249–276 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Routledge, London (1968)MATHGoogle Scholar
  19. 19.
    Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics. In: Dean, T. (ed.) Proceedings IJCAI 1999, pp. 110–115. Morgan Kaufmann, San Francisco (1999)Google Scholar
  20. 20.
    Massacci, F.: Single step tableaux for modal logics: Computational properties, complexity and methodology. Journal of Automated Reasoning 24(3), 319–364 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Reker, H., Schmidt, R.A., Tishkovsky, D.: Clausal tableau decision procedures for the two-variable fragment with equality (2010) (manuscript)Google Scholar
  22. 22.
    Schmidt, R.A.: Developing modal tableaux and resolution methods via first-order resolution. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 1–26. College Publications, London (2006)Google Scholar
  23. 23.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics with role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 438–451. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 194–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 310–324. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi, (2010) (manuscript submitted for publication)Google Scholar
  27. 27.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role negation and identity, (2010) (manuscript submitted for publication)Google Scholar
  28. 28.
    Tarski, A.: On the calculus of relations. J. of Symb. Logic 6(3), 73–89 (1941)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tishkovsky, D.: metTel, http://www.mettel-prover.org
  30. 30.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: metTel: A generic tableau prover, (2011) (manuscript submitted for publication)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Renate A. Schmidt
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterUK

Personalised recommendations