Enriching Ontologies by Learned Negation

Or How to Teach Ontologies Vegetarianism
  • Daniel Fleischhacker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6644)

Abstract

Ontologies form the basis of the semantic web by providing knowledge on concepts, relations and instances. Unfortunately, the manual creation of ontologies is a time intensive and hence expensive task. This leads to the so-called knowledge acquisition bottleneck being a major problem for a more widespread adoption of the semantic web. Ontology learning tries to widen the bottleneck by supporting human knowledge engineers in creating ontologies. For this purpose, knowledge is extracted from existing data sources and is transformed into ontologies. So far, most ontology learning approaches are limited to very basic types of ontologies consisting of concept hierarchies and relations but do not use large amounts of the expressivity ontologies provide.

References

  1. 1.
    Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 34(5), 301–310 (2001)CrossRefGoogle Scholar
  2. 2.
    Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn., pp. 245–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Councill, I.G., McDonald, R., Velikovich, L.: What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In: Proc. of the Workshop on Negation and Speculation in Natural Language Processing, pp. 51–59 (2010)Google Scholar
  4. 4.
    Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Gindl, S., Kaiser, K., Miksch, S.: Syntactical negation detection in clinical practice guidelines. Studies in Health Technology and Informatics 136, 187–192 (2008)Google Scholar
  6. 6.
    Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and inconsistency. In: Proc. of the Workshop on Uncertainty Reasoning for the Semantic Web (URSW), pp. 45–55 (2005)Google Scholar
  7. 7.
    Haase, P., Völker, J.: Ontology learning and reasoning — dealing with uncertainty and inconsistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 366–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Harabagiu, S., Hickl, A., Lacatusu, F.: Negation, contrast and contradiction in text processing. In: Proc. of the 21st national conference on Artificial intelligence, vol. 1, pp. 755–762 (2006)Google Scholar
  9. 9.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. International Journal On Semantic Web and Information Systems 5, 25–48 (2009)CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Lowe, H.J.: A novel hybrid approach to automated negation detection in clinical radiology reports. Journal of the American Medical Informatics Association 14(3), 304–311 (2007)CrossRefGoogle Scholar
  11. 11.
    Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Machine Learning Research 10, 2639–2642 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Li, J., Zhou, G., Wang, H., Zhu, Q.: Learning the scope of negation via shallow semantic parsing. In: Proc. of the 23rd International Conference on Computational Linguistics, pp. 671–679 (2010)Google Scholar
  13. 13.
    Morante, R., Daelemans, W.: A metalearning approach to processing the scope of negation. In: Proc. of the 13th Conference on Computational Natural Language Learning, pp. 21–29 (2009)Google Scholar
  14. 14.
    Sarafraz, F., Nenadic, G.: Using SVMs with the command relation features to identify negated events in biomedical literature. In: Proc. of the Workshop on Negation and Speculation in Natural Language Processing, pp. 78–85 (2010)Google Scholar
  15. 15.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Fleischhacker
    • 1
  1. 1.KR & KM Research GroupUniversity of MannheimGermany

Personalised recommendations