Statistical Schema Induction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6643)


While the realization of the Semantic Web as once envisioned by Tim Berners-Lee remains in a distant future, the Web of Data has already become a reality. Billions of RDF statements on the Internet, facts about a variety of different domains, are ready to be used by semantic applications. Some of these applications, however, crucially hinge on the availability of expressive schemas suitable for logical inference that yields non-trivial conclusions. In this paper, we present a statistical approach to the induction of expressive schemas from large RDF repositories. We describe in detail the implementation of this approach and report on an evaluation that we conducted using several data sets including DBpedia.


Linked Data Ontologies Association Rule Mining 


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  2. 2.
    Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2), 97–104 (2010)Google Scholar
  3. 3.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI, Edinburgh, UK. Morgan-Kaufmann Publishers, San Francisco (2005)Google Scholar
  4. 4.
    Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K., Patel-Schneider, P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)Google Scholar
  5. 5.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 230–235. AAAI Press, Menlo Park (2007)Google Scholar
  6. 6.
    Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: 15th Conference on Computational Statistics, pp. 395–400 (2002)Google Scholar
  8. 8.
    Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divise and agglomerative clustering for learning taxonomies from text. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), pp. 435–439. IOS Press, Amsterdam (2004)Google Scholar
  9. 9.
    Cimiano, P., Rudolph, S., Hartfiel, H.: Computing intensional answers to questions – an inductive logic programming approach. Data & Knowledge Engineering 69(3), 261–278 (2010)CrossRefGoogle Scholar
  10. 10.
    Cohen, W.W., Hirsh, H.: Learning the classic description logic: Theoretical and experimental results. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 121–133. Morgan Kaufmann, San Francisco (1994)CrossRefGoogle Scholar
  11. 11.
    d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the semantic web: What does it buy? Semantic Web 1(1-2), 53–59 (2010)Google Scholar
  12. 12.
    David, J., Guillet, F., Briand, H.: Association rule ontology matching approach. International Journal on Semantic Web and Information Systems 3(2), 27–49 (2007)CrossRefGoogle Scholar
  13. 13.
    Delteil, A., Faron-Zucker, C., Dieng, R.: Learning ontologies from rdf annotations. In: Maedche, A., Staab, S., Nedellec, C., Hovy, E.H. (eds.) Proceedings of the 2nd Workshop on Ontology Learning (OL) at the 17th International Conference on Artificial Intelligence (IJCAI). CEUR Workshop Proceedings, vol. 38, (2001)Google Scholar
  14. 14.
    Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 152–165. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Haase, P., Völker, J.: Ontology learning and reasoning — dealing with uncertainty and inconsistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 366–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs isn’t the same: An analysis of identity in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. International Journal on Semantic Web and Information Systems 5(2), 25–48 (2009)CrossRefGoogle Scholar
  18. 18.
    Jain, P., Hitzler, P., Yeh, P.Z., Sheth, A.P.: Linked data is merely more data. In: Proceedings of the AAAI Spring Symposium, Linked AI: Linked Data Meets Artificial Intelligence (2010)Google Scholar
  19. 19.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptualizations in folksonomies. Journal of Web Semantics 6(1), 38–53 (2008)CrossRefGoogle Scholar
  20. 20.
    Jiang, T., Tan, A.-H.: Mining RDF metadata for generalized association rules. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 223–233. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kuittinen, H., Tuominen, J., Hyvönen, E.: Extending an ontology by analyzing annotation co-occurrences in a semantic cultural heritage portal. In: Proceedings of the Workshop on Collective Intelligence (ASWC-CI) at the 3rd Asian Semantic Web Conference, ASWC (2008)Google Scholar
  22. 22.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mädche, A., Staab, S.: Discovering conceptual relations from text. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), pp. 321–325. IOS Press, Amsterdam (2000)Google Scholar
  24. 24.
    Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Nebot, V., Berlanga, R.: Mining association rules from semantic web data. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6097, pp. 504–513. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Rudolph, S.: Acquiring generalized domain-range restrictions. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 32–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Stumme, G.: Efficient data mining based on formal concept analysis. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 534–546. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future directions. Journal of Web Semantics 4(2), 124–143 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.KR & KM Research GroupUniversity of MannheimGermany

Personalised recommendations