Advertisement

Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton

  • Prateek Jain
  • Peter Z. Yeh
  • Kunal Verma
  • Reymonrod G. Vasquez
  • Mariana Damova
  • Pascal Hitzler
  • Amit P. Sheth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6643)

Abstract

The Linked Open Data (LOD) is a major milestone towards realizing the Semantic Web vision, and can enable applications such as robust Question Answering (QA) systems that can answer queries requiring multiple, disparate information sources. However, realizing these applications requires relationships at both the schema and instance level, but currently the LOD only provides relationships for the latter. To address this limitation, we present a solution for automatically finding schema-level links between two LOD ontologies – in the sense of ontology alignment. Our solution, called BLOOMS+, extends our previous solution (i.e. BLOOMS) in two significant ways. BLOOMS+ 1) uses a more sophisticated metric to determine which classes between two ontologies to align, and 2) considers contextual information to further support (or reject) an alignment. We present a comprehensive evaluation of our solution using schema-level mappings from LOD ontologies to Proton (an upper level ontology) – created manually by human experts for a real world application called FactForge. We show that our solution performed well on this task. We also show that our solution significantly outperformed existing ontology alignment solutions (including our previously published work on BLOOMS) on this same task.

References

  1. 1.
    Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets – On the Design and Usage of voiD, the ’Vocabulary of Interlinked Datasets’. In: WWW 2009 Workshop on Linked Data on the Web (LDOW 2009), Madrid, Spain (2009)Google Scholar
  2. 2.
    Baker, C., Fillmore, C., Lowe, J.: The berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics, Morgan Kaufmann Publishers (1998)Google Scholar
  3. 3.
    Bergman, M.K., Giasson, F.: UMBEL ontology, volume 1, technical documentation. Technical Report 1, Structured Dynamics (2008), http://umbel.org/doc/UMBELOntology_vA1.pdf
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. International Journal On Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Rec. 35(3), 34–41 (2006)CrossRefGoogle Scholar
  6. 6.
    Cornet, R., de Keizer, N.: Forty years of SNOMED: a literature review. BMC medical informatics and decision making 8(suppl. 1) (2008), http://www.biomedcentral.com/1472-6947/8/S1/S2
  7. 7.
    Damova, M., Kiryakov, A., Simov, K., Petrov, S.: Mapping the Central LOD Ontologies to PROTON Upper-Level Ontology. In: Shvaiko, P., Euzenat, J., Giunchiglia, F., Stuckenschmidt, H., Mao, M., Cruz, I. (eds.) Proceedings of the Fifth International Workshop on Ontology Matching. CEUR Workshop Proceedings (November 2010)Google Scholar
  8. 8.
    David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with AROMA. In: CIKM 2006: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 830–831. ACM, New York (2006)Google Scholar
  9. 9.
    Euzenat, J., d’Aquin, M., Sabou, M., Zimmer, A.: Matching ontologies for context. Technical Report NEON/2006/D3.3.1/0.8, INRIA (2007)Google Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  11. 11.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database (Language, Speech, and Communication). illustrated edition edn. The MIT Press, Cambridge (1998), http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026206197X zbMATHGoogle Scholar
  12. 12.
    Giunchiglia, F., Autayeu, A., Pane, J.: S-Match: an open source framework for matching lightweight ontologies (2010)Google Scholar
  13. 13.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010), http://data.semanticweb.org/conference/iswc/2010/paper/218 CrossRefGoogle Scholar
  14. 14.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data is Merely More Data. In: Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial Intelligence, pp. 82–86. AAAI Press, Menlo Park (2010)Google Scholar
  15. 15.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering 21, 1218–1232 (2009)CrossRefGoogle Scholar
  16. 16.
    Mascardi, V., Locoro, A., Rosso, P.: Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation. IEEE Transactions on Knowledge and Data Engineering 22(5), 609–623 (2010)CrossRefGoogle Scholar
  17. 17.
    Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 332–346. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Parundekar, R., Knoblock, C., Ambite, J.L.: Linking and building ontologies of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010), http://data.semanticweb.org/conference/iswc/2010/paper/334 CrossRefGoogle Scholar
  19. 19.
    Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating wikipedia. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, pp. 2083–2088 (2009)Google Scholar
  20. 20.
    Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: AAAI 2007: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1440–1445. AAAI Press, Menlo Park (2007)Google Scholar
  21. 21.
    Terziev, I., Kiryakov, A., Manov, D.: Base upper-level ontology (bulo) Guidance. Technical report, Ontotext Lab, Sirma Group, Deliverable of EU-IST Project IST-2003-506826 (2004), http://proton.semanticweb.org/D1_8_1.pdf
  22. 22.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Prateek Jain
    • 1
    • 2
  • Peter Z. Yeh
    • 2
  • Kunal Verma
    • 2
  • Reymonrod G. Vasquez
    • 2
  • Mariana Damova
    • 3
  • Pascal Hitzler
    • 1
  • Amit P. Sheth
    • 1
  1. 1.Kno.e.sis CenterWright State UniversityDaytonUSA
  2. 2.Accenture Technology LabsSan JoseUSA
  3. 3.Ontotext ADSofiaBulgaria

Personalised recommendations