AutoSPARQL: Let Users Query Your Knowledge Base

  • Jens Lehmann
  • Lorenz Bühmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6643)


An advantage of Semantic Web standards like RDF and OWL is their flexibility in modifying the structure of a knowledge base. To turn this flexibility into a practical advantage, it is of high importance to have tools and methods, which offer similar flexibility in exploring information in a knowledge base. This is closely related to the ability to easily formulate queries over those knowledge bases. We explain benefits and drawbacks of existing techniques in achieving this goal and then present the QTL algorithm, which fills a gap in research and practice. It uses supervised machine learning and allows users to ask queries without knowing the schema of the underlying knowledge base beforehand and without expertise in the SPARQL query language. We then present the AutoSPARQL user interface, which implements an active learning approach on top of QTL. Finally, we evaluate the approach based on a benchmark data set for question answering over Linked Data.


Description Logic User Query Question Answering Inductive Logic Programming SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bryant, C.H., Muggleton, S., Oliver, S.G., Kell, D.B., Reiser, P.G.K., King, R.D.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Electron. Trans. Artif. Intell. 5(B), 1–36 (2001)Google Scholar
  3. 3.
    Cimiano, P., Rudolph, S., Hartfiel, H.: Computing intensional answers to questions - an inductive logic programming approach. Data Knowl. Eng. 69(3), 261–278 (2010)CrossRefGoogle Scholar
  4. 4.
    Clark, L.: Sparql views: A visual sparql query builder for drupal. In: 9th International Semantic Web Conference (ISWC 2010) (Posters&Demo track) (November 2010)Google Scholar
  5. 5.
    Cumby, C.M., Roth, D.: Learning with feature description logics. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 32–47. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  8. 8.
    Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14, 193–217 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lehmann, J., Haase, C.: Ideal downward refinement in the \(\mathcal{EL}\) description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Muggleton, S., Santos, J., Tamaddoni-Nezhad, A.: ProGolem: A system based on relative minimal generalisation. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 131–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  14. 14.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jens Lehmann
    • 1
  • Lorenz Bühmann
    • 1
  1. 1.AKSW Group, Department of Computer ScienceLeipzigGermany

Personalised recommendations