Advertisement

Understanding an Ontology through Divergent Exploration

  • Kouji Kozaki
  • Takeru Hirota
  • Riichiro Mizoguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6643)

Abstract

It is important that the ontology captures the essential conceptual structure of the target world as generally as possible. However, such ontologies are sometimes regarded as weak and shallow by domain experts because they often want to understand the target world from the domain-specific viewpoints in which they are interested. Therefore, it is highly desirable to have not only knowledge structuring from the general perspective but also from the domain-specific and multi-perspective so that concepts are structured for appropriate understanding from the multiple experts. On the basis of this observation, the authors propose a novel approach, called divergent exploration of an ontology, to bridge the gap between ontologies and domain experts. Based on the approach, we developed an ontology exploration tool and evaluated the system through an experimental use by experts in an environmental domain. As a result, we confirmed that the tool supports experts to obtain meaningful knowledge for them through the divergent exploration and it contributes to integrated understanding of the ontology and its target domain.

Keywords

ontology divergent exploration view point conceptual map 

References

  1. 1.
    Gruber, T.: A translation approach to portable ontology specifications. In: Proc. of JKAW 1992, pp. 89–108 (1992)Google Scholar
  2. 2.
    Smith, B., et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)CrossRefGoogle Scholar
  3. 3.
    Kozaki, K., et al.: Hozo: An Environment for Building/Using Ontologies Based on a Fundamental Consideration of ”Role” and ”Relationship”. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 213–218. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Mizoguchi, R., et al.: A Model of Roles within an Ontology Development Tool: Hozo. J. of Applied Ontology 2(2), 159–179 (2007)Google Scholar
  5. 5.
    Kozaki, K., et al.: Role Representation Model Using OWL and SWRL. In: Proc. of 2nd Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies, Berlin, July 30-31 (2007)Google Scholar
  6. 6.
    Kumazawa, T., et al.: Toward Knowledge Structuring of Sustainability Science Based on Ontology Engineering. Sustainability Science 4(1), 99–116 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Katifori, A., Halatsis, C., et al.: Ontology visualization methods - a survey. ACM Computing Surveys (CSUR) 39(4) (2007)Google Scholar
  8. 8.
    Noy, N.F., et al.: The CKC Challenge: Exploring Tools for Collaborative Knowledge Construction. IEEE Intelligent Systems 23(1), 64–68 (2008)CrossRefGoogle Scholar
  9. 9.
    Alani, H.: TGVizTab: An ontology visualization extension for Protégé. In: Proc. of Knowledge Capture (K-Cap 2003), Workshop on Visualization Information in Knowledge Engineering, Sanibel Island, Florida (2003)Google Scholar
  10. 10.
    Bosca, A., Bonino, D.: Ontology Exploration through Logical Views in Protégé. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 465–469. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Noppens, O., Liebig, T.: Understanding Interlinked Data - Visualising, Exploring, and Analysing Ontologies. In: Proc. of International Conferences on Knowledge Management and New Media Technology (I-KNOW 2008), Graz, Austria, pp. 341–348 (2008)Google Scholar
  12. 12.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive Relationship Discovery via the Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Thomas, C., et al.: Growing Fields of Interest - Using an Expand and Reduce Strategy for Domain Model Extraction. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology 2008, vol. 1, pp. 496–502 (2008)Google Scholar
  14. 14.
    Tane, J., Cimiano, P., Hitzler, P.: Query-based multicontexts for knowledge base browsing: An evaluation. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 413–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Ohta, M., Kozaki, K., Mizoguchi, R.: A quality assurance framework for ontology construction and refinement. In: Mugellini, E., Szczepaniak, P.S., Pettenati, M.C., Sokhn, M. (eds.) AWIC 2011. Advances in Intelligent and Soft Computing, vol. 86, pp. 207–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kouji Kozaki
    • 1
  • Takeru Hirota
    • 1
  • Riichiro Mizoguchi
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations