Linking Lexical Resources and Ontologies on the Semantic Web with Lemon

  • John McCrae
  • Dennis Spohr
  • Philipp Cimiano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6643)


There are a large number of ontologies currently available on the Semantic Web. However, in order to exploit them within natural language processing applications, more linguistic information than can be represented in current Semantic Web standards is required. Further, there are a large number of lexical resources available representing a wealth of linguistic information, but this data exists in various formats and is difficult to link to ontologies and other resources. We present a model we call lemon (Lexicon Model for Ontologies) that supports the sharing of terminological and lexicon resources on the Semantic Web as well as their linking to the existing semantic representations provided by ontologies. We demonstrate that lemon can succinctly represent existing lexical resources and in combination with standard NLP tools we can easily generate new lexica for domain ontologies according to the lemon model. We demonstrate that by combining generated and existing lexica we can collaboratively develop rich lexical descriptions of ontology entities. We also show that the adoption of Semantic Web standards can provide added value for lexicon models by supporting a rich axiomatization of linguistic categories that can be used to constrain the usage of the model and to perform consistency checks.


Noun Phrase Lexical Entry Linguistic Information Proper Noun Language Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    Bontcheva, K.: Generating tailored textual summaries from ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 531–545. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.98 (2010) (accessed December 3, 2010)Google Scholar
  4. 4.
    Buitelaar, P.: Ontology-based Semantic Lexicons: Mapping between Terms and Object Descriptions. In: Ontology and the Lexicon, pp. 212–223. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  5. 5.
    Chiarcos, C.: Grounding an Ontology of Linguistic Annotations in the Data Category Registry. In: Proceedings of the 2010 International Conference on Language Resource and Evaluation, LREC (2010)Google Scholar
  6. 6.
    Cimiano, P., Buitelaar, P., McCrae, J., Sintek, M.: LexInfo: A Declarative Model for the Lexicon-Ontology Interface. Web Semantics: Science, Services and Agents on the World Wide Web 9(1), 29–51 (2011)CrossRefGoogle Scholar
  7. 7.
    Collier, N., Doan, S., Kawazoe, A., Goodwin, R., Conway, M., Tateno, Y., Ngo, Q., Dien, D., Kawtrakul, A., Takeuchi, K., Shigematsu, M., Taniguchi, K.: BioCaster: detecting public health rumors with a Web-based text mining system. Oxford Bioinformatics 24(24), 2940–2941 (2008)CrossRefGoogle Scholar
  8. 8.
    Farrar, S., Langendoen, D.: Markup and the GOLD Ontology. In: Proceedings of Workshop on Digitizing and Annotating Text and Field Recordings (2003)Google Scholar
  9. 9.
    Fellbaum, C.: WordNet: An electronic lexical database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  10. 10.
    Francopoulo, G., George, M., Calzolari, N., Monachini, M., Bel, N., Pet, M., Soria, C.: Lexical markup framework (LMF). In: Proceedings of the Fifth International Conference on Language Resource and Evaluation (LREC 2006) (2006)Google Scholar
  11. 11.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening wordnet with DOLCE. AI Magazine 24(3), 13 (2003)zbMATHGoogle Scholar
  12. 12.
    Gangemi, A., Navigli, R., Velardi, P.: The ontoWordNet project: Extension and axiomatization of conceptual relations in wordNet. In: Chung, S., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 820–838. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kemps-Snijders, M., Windhouwer, M., Wittenburg, P., Wright, S.: ISOcat: Corralling data categories in the wild. In: Proceedings of the 2008 International Conference on Language Resource and Evaluation, LREC (2008)Google Scholar
  14. 14.
    Kilgarriff, A.: I Don’t Believe in Word Senses. Computers and the Humanities 31(2), 91–113 (1997)CrossRefGoogle Scholar
  15. 15.
    Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, pp. 423–430 (2003)Google Scholar
  16. 16.
    Korhonen, A., Krymolowski, Y., Briscoe, T.: A large subcategorization lexicon for natural language processing applications. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006 (2006)Google Scholar
  17. 17.
    Lopez, V., Pasin, M., Motta, E.: AquaLog: An ontology-portable question answering system for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 546–562. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Miles, A., Bechhofer, S.: SKOS Simple Knowledge Organization System Reference (2009) (accessed October 19, 2010)Google Scholar
  19. 19.
    Romary, L.: Standardization of the formal representation of lexical information for NLP. In: Dictionaries: An International Encyclopedia of Lexicography. Mouton de Gruyter, Berlin (2010)Google Scholar
  20. 20.
    Sagot, B.: The Lefff, a freely available and large coverage morphological and syntactic lexicon for French. In: Proceedings of the 2010 International Conference on Language Resource and Evaluation (LREC) (2010)Google Scholar
  21. 21.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L., Eilbeck, K., Ireland, A., Mungall, C., et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)CrossRefGoogle Scholar
  22. 22.
    Spackman, K., Campbell, K., Côté, R.: SNOMED RT: a reference terminology for health care. In: Proceedings of the AMIA Annual Fall Symposium, pp. 640–644 (1997)Google Scholar
  23. 23.
    Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 173–180 (2003)Google Scholar
  24. 24.
    Van Assem, M., Gangemi, A., Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • John McCrae
    • 1
  • Dennis Spohr
    • 1
  • Philipp Cimiano
    • 1
  1. 1.AG Semantic Computing, CITECUniversity of BielefeldGermany

Personalised recommendations