Advertisement

Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model

  • R. Chabiniok
  • P. Moireau
  • P. -F. Lesault
  • A. Rahmouni
  • J. -F. Deux
  • D. Chapelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

In this paper we apply specific data assimilation methods in order to estimate regional contractility parameters in a biomechanical heart model, using as measurements real Cine MR images obtained in an animal experiment. We assess the effectiveness of this estimation based on independent knowledge of the controlled infarcted condition, and on late enhancement images. Moreover, we show that the estimated contractility values can improve the model behavior in itself, and that they can serve as an indicator of the local heart function, namely, to assist medical diagnosis for the post-infarct detection of hypokinetic or akinetic regions in the myocardial tissue.

Keywords

Data Assimilation Unscented Kalman Filter Anatomical Model Regional Contractility Contractility Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Nielsen, P.M.F., Young, A.A.: Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J. Biomech. Eng. 127(1), 148–157 (2005)CrossRefGoogle Scholar
  2. 2.
    Bogatyrenko, E., Hanebeck, U.: Simultaneous state and parameter estimation for physics-based tracking of heart surface motion. In: Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 109–114 (2010)Google Scholar
  3. 3.
    Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement of healthcare professionals from the cardiac imaging comittee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002)CrossRefGoogle Scholar
  4. 4.
    Chabiniok, R., Chapelle, D., Lesault, P.-F., Rahmouni, A., Deux, J.-F.: Validation of a biomechanical heart model using animal data with acute myocardial infarction. In: Proc. of CI2BM 2009 - MICCAI Workshop (2009)Google Scholar
  5. 5.
    Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical simulation of the electromechanical activity of the heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. (2011) (in press)Google Scholar
  7. 7.
    Hu, Z.H., Metaxas, D., Axel, L.: In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med. Image Anal. 7(4), 435–444 (2003)CrossRefGoogle Scholar
  8. 8.
    Imperiale, A., Chabiniok, R., Moireau, P., Chapelle, D.: Constitutive parameter estimation methodology using tagged-MRI data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 409–417. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Liu, H., Shi, P.: Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. IEEE Trans. Biomed. Eng. 56(2), 378–389 (2009)CrossRefGoogle Scholar
  10. 10.
    Mansi, T., Peyrat, J.-M., Sermesant, M., Delingette, H., Blanc, J., Boudjemline, Y., Ayache, N.: Physically-constrained diffeomorphic demons for the estimation of 3D myocardium strain from cine-MRI. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 201–210. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. Cont. Optim. and Calc. Variat. (2010)Google Scholar
  12. 12.
    Moireau, P., Chapelle, D., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Comput. Meth. Appl. Mech. Eng. 197, 659–677 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moireau, P., Chapelle, D., Le Tallec, P.: Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inverse Prob. 25(3), 035010 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.-F.: External tissue support and fluid-structure simulation in blood flows. Biomech. Model. Mechanobiol. (2011) (in press)Google Scholar
  15. 15.
    Papademetris, X., Sinusas, A.J., Dione, D.P., Constable, R.T., Duncan, J.S.: Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imaging 21(7), 786–800 (2002)CrossRefGoogle Scholar
  16. 16.
    Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84, 1743–1759 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schaerer, J., Casta, C., Pousin, J., Clarysse, P.: A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med. Image Anal. 14, 738–749 (2010)CrossRefGoogle Scholar
  18. 18.
    Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med. Image Anal. 10(4), 642–656 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Chabiniok
    • 1
  • P. Moireau
    • 1
  • P. -F. Lesault
    • 2
  • A. Rahmouni
    • 2
  • J. -F. Deux
    • 2
  • D. Chapelle
    • 1
  1. 1.INRIAMACS TeamLe ChesnayFrance
  2. 2.AP-HP Hôpital Henri MondorUniversité Paris-Est CréteilFrance

Personalised recommendations