Advertisement

Comparing Simulated Electrocardiograms of Different Stages of Acute Cardiac Ischemia

  • Mathias Wilhelms
  • Olaf Dössel
  • Gunnar Seemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Diagnosis of acute cardiac ischemia depends on characteristic shifts of the ST segment. The transmural extent of the ischemic region and the temporal stage of ischemia have an impact on these changes. In this work, computer simulations of realistic ventricles with different transmural extent of the ischemic region were carried out. Furthermore, three stages within the first half hour after the occlusion of the distal left anterior descending coronary artery were regarded. The transmembrane voltage distributions and the corresponding body surface ECGs were calculated. It was observed how the electrophysiological properties worsen in the course of ischemia, so that almost no excitation was initiated in the central ischemic zone 30 minutes after the occlusion. In addition to these temporal effects, also the transmural extent of the ischemic region had an impact on the direction and intensity of the ST segment shift.

Keywords

Cardiac Ischemia Phase 1b Electrocardiogram Mathematical Modeling ST Segment Shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carmeliet, E.: Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol. Rev. 79, 917–1017 (1999)Google Scholar
  2. 2.
    Cascio, W., Yang, H., Muller-Borer, B., Johnson, T.: Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation. J. Electrocardiol 38, 55–59 (2005)CrossRefGoogle Scholar
  3. 3.
    Weiss, D., Ifland, M., Sachse, F.B., Seemann, G., Dössel, O.: Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomed. Tech. 54, 107–125 (2009)CrossRefGoogle Scholar
  4. 4.
    Rodríguez, B., Tice, B., Eason, J., Aguel, F., Ferrero, J., Trayanova, N.: Effect of acute global ischemia on the upper limit of vulnerability: a simulation study. Am. J. Physiol-Heart C 286, 2078–2088 (2004)CrossRefGoogle Scholar
  5. 5.
    Colonna, P., Cadeddu, C., Montisci, R., Chen, L., Meloni, L., Iliceto, S.: Transmural heterogeneity of myocardial contraction and ischemia. Diagnosis and clinical implications. Ital Heart J. 1, 174–183 (2000)Google Scholar
  6. 6.
    Furukawa, T., Kimura, S., Furukawa, N., Bassett, A., Myerburg, R.: Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ. Res. 68, 1693–1702 (1991)CrossRefGoogle Scholar
  7. 7.
    Foster, D.: Ischemia and Anginal Syndromes. In: Twelve-lead Electrocardiography: Theory and Interpretation. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    ten Tusscher, K., Panfilov, A.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol-Heart C 291, H1088–H1100 (2006)CrossRefGoogle Scholar
  9. 9.
    Pollard, A., Cascio, W., Fast, V., Knisley, S.: Modulation of triggered activity by uncoupling in the ischemic border. A model study with phase 1b-like conditions. Cardiovasc Res. 56, 381–392 (2002)CrossRefGoogle Scholar
  10. 10.
    Jie, X., Trayanova, N.: Mechanisms for initiation of reentry in acute regional ischemia phase 1b. Heart Rhythm 7, 379–386 (2010)CrossRefGoogle Scholar
  11. 11.
    Ramirez, E., Saiz, J., Trenor, B., Ferrero, J., Molto, G., Hernandez, V.: Influence of 1b ischemic ventricular tissue on the automaticity of purkinje fibers: A simulation study. In: Computers in Cardiology, pp. 617–620 (2007)Google Scholar
  12. 12.
    Keller, D.U.J., Weber, F.M., Seemann, G., Dössel, O.: Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Transactions on Biomedical Engineering 57, 1568–1576 (2010)CrossRefGoogle Scholar
  13. 13.
    www.ibt.kit.edu/acCELLerate.php Cardiac Electrophysiology and Tension Development Software
  14. 14.
    Kleber, A., Janse, M., van Capelle, F., Durrer, D.: Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ. Res. 42, 603–613 (1978)CrossRefGoogle Scholar
  15. 15.
    Cinca, J., Warren, M., Carreno, A., Tresanchez, M., Armadans, L., Gomez, P., Soler-Soler, J.: Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning: correlation with local ST-segment potential and ventricular arrhythmias. Circ. 96, 3079–3086 (1997)CrossRefGoogle Scholar
  16. 16.
    Potse, M., Dubé, B., Richter, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)CrossRefGoogle Scholar
  17. 17.
    Terkildsen, J., Crampin, E., Smith, N.: The balance between inactivation and activation of the Na + -K +  pump underlies the triphasic accumulation of extracellular K +  during myocardial ischemia. Am. J. Physiol. 293, H3036–H3045 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathias Wilhelms
    • 1
  • Olaf Dössel
    • 1
  • Gunnar Seemann
    • 1
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations