Parameter Estimation from Laser Flash Experiment Data

  • Louise Wright
  • Xin-She Yang
  • Clare Matthews
  • Lindsay Chapman
  • Simon Roberts
Part of the Studies in Computational Intelligence book series (SCI, volume 359)

Abstract

Optimisation techniques are commonly used for parameter estimation in a wide variety of applications. The application described here is a laser flash thermal diffusivity experiment on a layered sample where the thermal properties of some of the layers are unknown. The aim is to estimate the unknown properties by minimising, in a least squares sense, the difference between model predictions and measured data. Two optimisation techniques have been applied to the problem. Results suggest that the classical nonlinear least-squares optimiser is more efficient than particle swarm optimisation (PSO) for this type of problem. Results have also highlighted the importance of defining a suitable objective function and choosing appropriate model parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapman, L.A., Fry, A.T., Roberts, S.J.: Thermal diffusivity and thermal conductivity measurements on oxide scales. Technical Report MATC(D) 188, National Physical Laboratory (2004)Google Scholar
  2. 2.
    Clark, L.M., Taylor, R.E.: Radiation loss in the flash method for thermal diffusivity. J. Appl. Phys. 46, 714–719 (1975)CrossRefGoogle Scholar
  3. 3.
    Coleman, T.F., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming 67, 189–224 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coleman, T.F., Li, Y.: An interior trust-region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–485 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cowan, R.D.: Pulse method for measuring thermal diffusivity at high temperatures. J. Appl. Phys. 34, 926–927 (1963)CrossRefGoogle Scholar
  6. 6.
    Duncan, B.C., Pilkington, G., Nottay, J.S., Allen, C.R.G., Lawrence, K., Urquhart, J., Roberts, S.J.: Diffusion of moisture in adhesive bonds. Technical Report DEPC-MPR 062, National Physical Laboratory (2007)Google Scholar
  7. 7.
    Dusza, L.: Combined solution of the simultaneous heat loss and finite pulse corrections with the laser flash method. High Temp. High Press. 27/28, 467–473 (1995/1996)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhardt, R.C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, pp. 1942–1948. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  9. 9.
    Parker, W.J., Jenkins, R.J., Butle, C.P., Abbott, G.L.: Flash method for determining thermal diffusivity, heat capacity and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)CrossRefGoogle Scholar
  10. 10.
    Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Avdances in Optimization and Numerical Anlaysis. Kluwer Academic, Dordrecht (1994)Google Scholar
  11. 11.
    Taylor, R.E., Clark, L.M.: Finite pulse time effects in flash diffusivity method. High Temp. High Press. 6, 65–72 (1974)Google Scholar
  12. 12.
    Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Louise Wright
    • 1
  • Xin-She Yang
    • 1
  • Clare Matthews
    • 1
  • Lindsay Chapman
    • 1
  • Simon Roberts
    • 1
  1. 1.National Physical LaboratoryMathematics and Scientific ComputingTeddingtonUK

Personalised recommendations