Advances in Natural Polymers pp 21-54

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 18) | Cite as

Cellulose Based Blends, Composites and Nanocomposites

  • F. G. Torres
  • O. P. Troncoso
  • C. Torres
  • C. J. Grande


Cellulose is the most abundant natural polymer on earth. It is the major constituent of cotton and wood, which together are the basic resources for all cellulose based products such as paper, textiles, construction materials, etc. Cellulose is also used as raw material for the production of blends, composites and nanocomposites which have a variety of different applications. In this chapter we review the main characteristics and properties of cellulose as well as its most promising potential applications emphasizing the use of composites reinforced with lignocellulosic fibers, nanocomposites reinforced with cellulose whiskers and bacterial cellulose nanocomposites. First, we start describing the structure and properties of cellulose at the molecular, supramolecular and morphological level. We present a review of cellulose whiskers, including the main processing techniques used for their preparation, as well as the influence of the processing conditions on the characteristics of such whiskers. We continue describing the manufacture of cellulose based blends, composites and nanocomposites. Composites reinforced with lignocellulosic macro-fibers as well as nanocomposites reinforced with cellulose whiskers and bacterial cellulose nanofibers are reviewed in this section. Finally, we present several applications for cellulose based composites and nanocomposites. This last section includes biomedical, optoelectronic and electrical applications as well as the use of cellulose for the preparation of high strength “nanopapers” and materials for packaging applications.


  1. 1.
    Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003)Google Scholar
  2. 2.
    Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003)Google Scholar
  3. 3.
    Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of food science food technology and nutrition. London Academic Press, UK (1993)Google Scholar
  4. 4.
    Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry, Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998)Google Scholar
  5. 5.
    Dufresne, A.: Polysaccharide nanocrystals reinforced nanocomposites. Can. J. Chem. 86, 484–494 (2008)Google Scholar
  6. 6.
    Wang, W., Cai, Z., Yu, J.: Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3, 1–11 (2008)Google Scholar
  7. 7.
    Krässig, H.A.: Cellulose: Structure, Accessibility, and Reactivity. Gordon and Breach Science Publishers, Switzerland (1993)Google Scholar
  8. 8.
    Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004)Google Scholar
  9. 9.
    Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)Google Scholar
  10. 10.
    Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose: a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)Google Scholar
  11. 11.
    Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48, 2589–2594 (2000)Google Scholar
  12. 12.
    Grande, C.J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J., Martínez-Pastor, J.: Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym. Polym. Compos. 16, 181–185 (2008)Google Scholar
  13. 13.
    Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009)Google Scholar
  14. 14.
    Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications. In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010)Google Scholar
  15. 15.
    Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications. US patent 4(588), 400 (1986)Google Scholar
  16. 16.
    Purves, C.B.: Chemical nature of cellulose and its derivatives. In: Ott, E., Spurlin, H.M. (eds.) Cellulose and Cellulose Derivatives: Part 1. Wiley-Interscience, USA (1954)Google Scholar
  17. 17.
    Marchessault, R.H., Sundararajan, P.R.: Cellulose. In: Aspinall, G. (ed.) The Polysaccharides. Academic Press, USA (1983)Google Scholar
  18. 18.
    Kontturi, E.J.: Surface Chemistry of Cellulose: From Natural Fibres to Model Surfaces. Technische Universiteit Eindhoven, Germany (2005)Google Scholar
  19. 19.
    Krässig, H.: Cellulose, Polymer Monographs Volume 11. Gordon and Breach Science Publishers, Amsterdam (1996)Google Scholar
  20. 20.
    Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. 44, 3358–3393 (2005)Google Scholar
  21. 21.
    Liang, C.Y., Marchessault, R.H.: Infrared spectra of crystalline polyssacharides II. Native celluloses in the region from 640 to 1700 cm-1. J. Polym. Sci. 39, 269–278 (1959)Google Scholar
  22. 22.
    Blackwell, J., Kolpak, F.J., Gardner, K.H.: Structures of native and regenerated celluloses. ACS Symp. Ser. 48, 42–55 (1977)Google Scholar
  23. 23.
    Nishikawa, S., Ono, S.: Transmission of X-rays through fibrous, lamellar and granular substances. Proc. Tokyo Math. Phys. Soc. 7, 131–138 (1913)Google Scholar
  24. 24.
    Cousins, S.K., Brown Jr, R.M.: Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by Van de Waals forces as the initial step in crystallization. Polymer 36, 3885–3888 (1995)Google Scholar
  25. 25.
    Cousins, S.K., Brown Jr, R.M.: X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38, 897–902 (1997)Google Scholar
  26. 26.
    O’Sullivan, A.C.: Cellulose: the structure slowly unravels. Cellulose 4, 173–207 (1997)Google Scholar
  27. 27.
    Klemm, D., Schumann, D., Kramer, F., Hebler, N., Hornung, M., Schumauder, H.P., Marsch, S.: Nanocelluloses as innovative polymers in research application. In: Klemm, D. (ed.) Polysaccharides II. Wiley-VCH, Weinheim (2002)Google Scholar
  28. 28.
    Sugiyama, J., Persson, J., Chanzy, H.: Combined IR and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466 (1991)Google Scholar
  29. 29.
    Gardner, K.H., Blackwell, J.: The structure of native cellulose. Biopolymers 13, 1975–2001 (1974)Google Scholar
  30. 30.
    Roberts, E., Saxena, I.M., Brown, Jr.R.M. Does cellulose II occur in nature?. In: Bailey, G.W. (ed.) Proceedings of the 47th Annual Meeting of the Electron Microscopy, Society of America (1989b)Google Scholar
  31. 31.
    Marrinan, H.J., Mann, J.: Infrared spectra of the crystalline modifications of cellulose. J. Polym. Sci. 21, 301–311 (1956)Google Scholar
  32. 32.
    Hayashi, J., Sufoka, A., Ohkita, J., Watanabe, S.: The conformation of existence of cellulose IIII, IIIII, IVI and IVII by X-ray method. J. Polym. Sci. Polym. Lett. 13, 23–27 (1975)Google Scholar
  33. 33.
    Davis, W.E., Barry, A.J., Peterson, F.C., King, A.J.: X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J. Am. Chem. Soc. 65, 1294–1300 (1943)Google Scholar
  34. 34.
    Sarko, A., Southwick, J., Hayashi, J.: Packing analysis of carbohydrates and polysaccharides 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9, 857–863 (1976)Google Scholar
  35. 35.
    Sarko, A.: Cellulose: how much do we know about its structure. In: Kennedy, J.F. (ed.) Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood, UK (1987)Google Scholar
  36. 36.
    Hess, K., Kissig, H.: Zur Kenntnis der Hochtemperatur-Modifikation der Cellulose (Cellulose IV). Z. Phys. Chem. B 49, 235–239 (1941)Google Scholar
  37. 37.
    Gardiner, E.S., Sarko, A.: Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can. J. Chem. 63, 173–180 (1985)Google Scholar
  38. 38.
    Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)Google Scholar
  39. 39.
    Fink, H.-P., Philipp, B., Zschunke, C., Hayn, M.: Structural changes of LOPD cellulose in the original and mercerized state during enzymatic hydrolysis. Acta Polym. 43, 270–274 (1992)Google Scholar
  40. 40.
    Cannon, R.E., Anderson, S.M.: Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435–447 (1991)Google Scholar
  41. 41.
    Sakurada, I., Nukushina, Y., Ito, T.: Experimental determination of elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (1962)Google Scholar
  42. 42.
    Battista, O.A.: Hydrolysis and crystallization of cellulose. Ind. Eng. Chem. 42, 502–507 (1950)Google Scholar
  43. 43.
    Battista, O.A., Coppick, S., Howsmon, J.A., Morehead, F.F., Sisson, W.A.: Level-off degree of polymerization. Ind. Eng. Chem. 48, 333–335 (1956)Google Scholar
  44. 44.
    Revol, J.F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G.: Helicoidal self-ordering of cellulose microfibrils in aqueous solution. Int. J. Biol. Macromol. 14, 170–172 (1992)Google Scholar
  45. 45.
    Araki, J., Wada, M., Kuga, S., Okano, T.: Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. 142, 75–82 (1998)Google Scholar
  46. 46.
    de Rodriguez, N.L.G., Thielemans, W., Dufresne, A.: Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006)Google Scholar
  47. 47.
    Whistler, R.L., BeMiller, J.M.: Carbohydrate chemistry for food scientists. American Association of Cereal Chemists, St Paul (1997)Google Scholar
  48. 48.
    El-Sakhawy, M., Hassan, M.: Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues. Carbohydr. Polym. 67, 1–10 (2007)Google Scholar
  49. 49.
    Helbert, W., Cavaillé, J.-Y., Dufresne, A.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym. Compos. 17, 604–611 (1996)Google Scholar
  50. 50.
    Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)Google Scholar
  51. 51.
    Stromme, M., Mihranyan, A., Ek, R.: What to do with all these algae? Mater. Lett. 57, 569–572 (2002)Google Scholar
  52. 52.
    Dufresne, A., Cavaillé, J.-Y., Vignon, M.R.: Mechanical behavior of sheet prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64, 1185–1894 (1997)Google Scholar
  53. 53.
    Gopalan, N.K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)Google Scholar
  54. 54.
    Dufresne, A., Vignon, M.R.: Improvement of starch film performances using cellulose microfibrils. Macromolecules 31, 2693–2696 (1998)Google Scholar
  55. 55.
    Dufresne, A., Dupeyre, D., Vignon, M.R.: Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J. Appl. Polym. Sci. 76, 2080–2092 (2000)Google Scholar
  56. 56.
    Heux, L., Chauve, G., Bonini, C.: Nonocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16, 8210–8212 (2000)Google Scholar
  57. 57.
    Favier, V., Dendievel, R., Canova, G., Cavaille, J.-Y., Gilormini, P.: Simulation and modeling of threedimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater. 45, 1557–1565 (1997)Google Scholar
  58. 58.
    Anglès, M.N., Dufresne, A.: Plasticized starch/tunicin whiskers nanocomposites : 2. mechanical behavior. Macromolecules 34, 2921–2931 (2001)Google Scholar
  59. 59.
    Ruiz, M.M., Cavaille, J.Y., Dufresne, A., Gerard, J.F., Graillat, C.: Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos. Interfaces 7, 117–131 (2000)Google Scholar
  60. 60.
    Sharples, A.: The hydrolysis of cellulose and its relation to structure, part 2. Trans. Faraday Soc. 54, 913–917 (1958)Google Scholar
  61. 61.
    Yachi, T., Hayashi, J., Takai, M., Shimizu, Y.J.: Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 325–343 (1983)Google Scholar
  62. 62.
    Hakansson, H., Ahlgren, P.: Acid hydrolysis of some industrial pulps, effect of hydrolysis conditions and raw material. Cellulose 12, 177–183 (2005)Google Scholar
  63. 63.
    Schurz, J., John, K.: Long periods in native and regenerated celluloses. Cellul. Chem. Technol. 9, 493–501 (1975)Google Scholar
  64. 64.
    Nishiyama, Y., Kim, U.J., Kim, D.Y., Katsumata, K.S., May, R.P., Langan, P.: Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4, 1013–1017 (2003)Google Scholar
  65. 65.
    Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9, 57–65 (2008)Google Scholar
  66. 66.
    Bai, W., Holbery, J., Li, K.: A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16, 455–465 (2009)Google Scholar
  67. 67.
    de Souza Lima, M.M., Borsali, R.: Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18, 992–996 (2002)Google Scholar
  68. 68.
    Okano, T., Kuga, S., Wada, M., Araki, J., Ikuina, J.: Nisshin Oil Mills Ltd., Japan. JP Patent 98/151052 (1999)Google Scholar
  69. 69.
    Filpponen, I. Ph.D. Thesis, North Carolina State University; Raleigh, NC (2009)Google Scholar
  70. 70.
    Wang, N., Ding, E., Cheng, R.: Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24, 5 (2008)Google Scholar
  71. 71.
    Wang, N., Ding, E., Cheng, R.: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48, 3486–3493 (2007)Google Scholar
  72. 72.
    Dong, X.M., Revol, J.F., Gray, D.G.: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19–32 (1998)Google Scholar
  73. 73.
    Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005)Google Scholar
  74. 74.
    Bondeson, D., Kvien, I., Oksman, K.: Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites: Processing, Characterization, and Properties; ACS Symposium Series 938. American Chemical Society, Washington (2006)Google Scholar
  75. 75.
    Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)Google Scholar
  76. 76.
    de Souza Lima, M.M., Wong, J.T., Paillet, M., Borsali, R., Pecora, R.: Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19, 24–29 (2003)Google Scholar
  77. 77.
    Terech, P., Chazeau, L., Cavaille, J.-Y.: A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32, 1872–1875 (1999)Google Scholar
  78. 78.
    Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and its nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)Google Scholar
  79. 79.
    Hanley, S.J., Giasson, J., Revol, J.F., Gray, D.G.: Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33, 4639–4642 (1992)Google Scholar
  80. 80.
    Miller, A.F., Donald, A.M.: Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4, 510–517 (2003)Google Scholar
  81. 81.
    Kamel, S.: Nanotechnology and its applications in lignocellulosic composites, a mini review; eXPRESS. Polym. Lett. 1, 546–575 (2007)Google Scholar
  82. 82.
    Lahiji, R.R., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J. Characterization of cellulose nanocrystal surfaces by SPM; Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show; Boston, Massachusetts (2008)Google Scholar
  83. 83.
    Tashiro, K., Kobayashi, M.: Theoretical evaluation of three dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32, 1516–1526 (1991)Google Scholar
  84. 84.
    Sturcova, A., Davies, G.R., Eichhorn, S.J.: Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055 (2005)Google Scholar
  85. 85.
    Rusli, R., Eichhorn, S.J.: Determination of the stiffness of cellulose nanowhiskers and the fibre-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 93, 033111 (2008)Google Scholar
  86. 86.
    Mayer, J.M., Elion, G.R., Buchanan, C.M., Sullivan, B.K., Pratt, S.D., Kaplan, D.L.: Biodegradable blends of cellulose acetate and starch: production and properties. J. Macromol. Sci. Part A 32, 775–785 (1995)Google Scholar
  87. 87.
    Freddi, G., Romano, M., Masafra, M.R., Tsukada, M.: Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J. Appl. Polym. Sci. 56, 1537–1545 (1995)Google Scholar
  88. 88.
    Torres, F.G., Diaz, R.M.: Morphological characterisation of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym. Polym. Compos. 12, 705–719 (2004)Google Scholar
  89. 89.
    Torres, F.G., Flores, R., Dienstmaier, J.F., Quintana, O.A.: Transport and flame properties of natural fibre reinforced polymers. Polym. Polym. Compos. 13, 753–764 (2005)Google Scholar
  90. 90.
    Torres, F.G., Arroyo, O.H., Gomez, C.: Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. thermoplast. compos. mater. 20, 207–223 (2007)Google Scholar
  91. 91.
    Torres, F.G., Aragon, C.L.: Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polym. Testing 25, 568–577 (2006)Google Scholar
  92. 92.
    Torres, F.G., Arroyo, O.H., Grande, C., Esparza, E.: Bio- and photo-degradation of natural fibre reinforced starch: based biocomposite. Int. J. Polym. Mater. 55, 1115–1132 (2006)Google Scholar
  93. 93.
    Grande, C., Torres, F.G.: Investigation of fiber organization and damage during single screw extrusion of natural fiber reinforced thermoplastics. Adv. Polym. Technol. 24, 145–156 (2005)Google Scholar
  94. 94.
    Kuruvilla, J., Sabu, T.I., Pavithran, C.: Dynamic mechanical properties of short sisal fiber reinforced low density polyethylene composites. J. Reinf. Plàst. Compos. 12, 139–154 (1993)Google Scholar
  95. 95.
    Herrera-Franco, P.J., Aguilar-Vega, M.J.: Effect of fiber treatment on mechanical properties of LDPE-henequen cellulosic fiber composites. J. Appl. Polym. Sci. 65, 197–207 (1997)Google Scholar
  96. 96.
    Youngquist, J.A.: Unlikely partners ? the marriage of wood and nonwood materials. For. Prod. J. 45, 25–30 (1995)Google Scholar
  97. 97.
    Sanadi, A.R., Caulfield, D.F., Rowell, R.M.: Reinforcing polypropylene with natural fibers. Plast. Eng. 4, 27–30 (1994)Google Scholar
  98. 98.
    Rowell, R.M.: Recent Advances in Lignocellulosic-Derived Composites. In: Chun, H.L (ed.) Polymers from Biobased Materials; Noyes Data Corp., New Jersey (1991)Google Scholar
  99. 99.
    Torres, F.G., Cubillas, M.L.: Study of the interfacial properties of natural fibre reinforced polyethylene. Polym. Testing 24, 694–698 (2005)Google Scholar
  100. 100.
    Sanadi, A.R., Caulfield, D.F., Jacobson, R.E., Rowell, R.M.: Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of Kenaf fiber: polypropylene composites. Ind. Eng. Chem. Res. 34, 1889–1896 (1995)Google Scholar
  101. 101.
    Gómez, C., Torres, F.G., Nakamatsu, J., Arroyo, O.H.: Thermal and structural analysis of natural fibre reinforced starch based biocomposites. Int. J. Polym. Mater. 55, 893–907 (2006)Google Scholar
  102. 102.
    Chazeau, L., Cavaille, J.Y., Canova, G., Dendievel, R., Boutherin, B.: Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J. Appl. Polym. Sci. 71, 1797–1808 (1999)Google Scholar
  103. 103.
    Matos-Ruiz, M., Cavaille′, J.-Y., Dufresne, A., Graillat, C., Gerard, J.-F.: New waterborne epoxy coatings based on cellulose nanofillers. Macromol. Symp. 169, 211–222 (2001)Google Scholar
  104. 104.
    Cao, X., Habibi, Y., Lucia, L.A.J.: One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 19, 7137–7145 (2009)Google Scholar
  105. 105.
    Marcovich, N.E., Auad, M.L., Bellesi, N.E., Nutt, S.R., Aranguren, M.I.: Cellulose micro/nanocrystals reinforced polyurethanes. J. Mater. Res. 21, 870–881 (2006)Google Scholar
  106. 106.
    Favier, F., Chanzy, H., Cavaille, J.-Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995)Google Scholar
  107. 107.
    Cavaille, J.-Y., Dufresne, A., Paillet, M., Azizi Samir, M.A.S., Alloin, F., Sanchez, J.Y.: French Patent FR2841255, (1999)Google Scholar
  108. 108.
    Grunnert, M., Winter, W.T.: Progress in the development of cellulose reinforced nanocomposites. Polym. Mater. Sci. Eng. 82, 232–233 (2000)Google Scholar
  109. 109.
    Noorani, S., Simonsen, J., Atre, S.: Polysulfone-Cellulose Nanocomposites. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites, Processing, Characterization and Properties, ACS Symposium Series 938, American Chemical Society, Washington (2006)Google Scholar
  110. 110.
    Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Env. 10, 27–30 (2002)Google Scholar
  111. 111.
    Petersson, L., Mathew, A.P., Oksman, K.J.: Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. Appl. Polym. Sci. 112, 2001–2009 (2009)Google Scholar
  112. 112.
    Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, : Bionanocomposites based on poly(e-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerizationA. J. Mater. Chem. 18, 5002–5010 (2008)Google Scholar
  113. 113.
    Paralikar, S.A., Simonsen, J., Lombardi, J.: Poly(vinyl alcohol)/cellulose nanocrystals barrier membranas. J. Membr. Sci. 320, 248–258 (2008)Google Scholar
  114. 114.
    Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44, 2489–2498 (2008)Google Scholar
  115. 115.
    Wang, Y., Cao, X., Zhang, L.: Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol. Biosci. 6, 524–531 (2006)Google Scholar
  116. 116.
    Li, Q., Zhou, J., Zhang, L.: Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J. Polym. Sci., Part B: Polym. Phys. 47, 1069–1077 (2009)Google Scholar
  117. 117.
    Qi, H., Cai, J., Zhang, L., Kuga, S.: Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10, 1597–1602 (2009)Google Scholar
  118. 118.
    Noshiki, Y., Nishiyama, Y., Wada, M., Kuga, S., Magoshi, J.: Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J. Appl. Polym. Sci. 86, 3425–3429 (2002)Google Scholar
  119. 119.
    Dufresne, A.: Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos. Interfaces 7, 53–67 (2000)Google Scholar
  120. 120.
    Siqueira, G., Bras, J., Dufresne, A.: Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10, 425–432 (2009)Google Scholar
  121. 121.
    Flandin, L., Bidan, G., Brechet, Y., Cavaille, J.Y.: New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym. Compos. 21, 165–174 (2000)Google Scholar
  122. 122.
    Gea, S., Torres, F.G., Troncoso, O.P., Reynolds, C.T., Vilasecca, F., Iguchi, M., Peijs, T.: Biocomposites based on bacterial cellulose and apple and radish pulp. Int. Polym. Proc. 5, 497–501 (2007)Google Scholar
  123. 123.
    Nishino, T., Matsuda, I., Hirao, K.: All-cellulose composite. Macromolecules 37, 7683–7687 (2004)Google Scholar
  124. 124.
    Gindl, W., Keckes, J.: All-cellulose nanocomposites. Polymer 46, 10221–10225 (2005)Google Scholar
  125. 125.
    Capadona, J.R., van den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., Weder, C.: A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007)Google Scholar
  126. 126.
    Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J., Weder, C.: Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008)Google Scholar
  127. 127.
    Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M., Guttman, M.E., Revol, J.F.: Application of cellulose microfibrils in polymer nanocomposites. J. Polym. Env. 13, 301–306 (2005)Google Scholar
  128. 128.
    Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J.: Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11, 674–681 (2010)Google Scholar
  129. 129.
    Park, W., Kang, M., Kim, H.-S., Jin, H.-J.: Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol. Symp. 240(250), 289–294 (2007)Google Scholar
  130. 130.
    de Mesquita, J.P., Donnici, C.L., Pereira, F.V.: Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11, 473–480 (2010)Google Scholar
  131. 131.
    Podsiadlo, P., Choi, S.Y., Shim, B., Lee, J., Cuddihy, M., Kotov, N.A.: Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6, 2914–2918 (2005)Google Scholar
  132. 132.
    Cranston, E.D., Gray, D.G.: Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci. Technol. Adv. Mater. 7, 319–321 (2006)Google Scholar
  133. 133.
    Grande, C.J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J., Martínez-Pastor, J.: Development of self-asembled Bacterial cellulose-starch nanocomposites. Mater. Sci. Eng. C 29, 1098–1104 (2009)Google Scholar
  134. 134.
    Zimmermann, T., Pöhler, E., Geiger, T.: Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6, 754–761 (2004)Google Scholar
  135. 135.
    Zimmermann, T., Pöhler, E., Schwaller, P.: Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv. Eng. Mater. 7, 1156–1161 (2005)Google Scholar
  136. 136.
    Stauss, S., Schwaller, P., Bucaille, J.-L., Blank, E., Michler, J.: Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron. Eng. 67, 818–825 (2003)Google Scholar
  137. 137.
    Favier, V., Canova, G.R., Cavaille, J.-Y., Chanzy, H., Dufresne, A., Gauthier, C.: Nanocomposites materials from latex and cellulose whiskers. Polym. Adv. Technol. 6, 351–355 (1995)Google Scholar
  138. 138.
    Anglès, M.N., Dufresne, A.: Plasticized starch/tunicin whiskers nanocomposites: 1. Struct. anal. Macromol. 33, 8344–8353 (2000)Google Scholar
  139. 139.
    Hajji, P., Cavaille, J.Y., Favier, V., Gauthier, C., Vigier, G.: Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym. Compos. 17, 612–619 (1996)Google Scholar
  140. 140.
    Mathew, A.P., Dufresne, A.: Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3, 609–617 (2002)Google Scholar
  141. 141.
    Chang, J.-H., Nam, S.W., Jang, S.-W.: Mechanical and morphological properties of lyocell blends: comparison with lyocell nanocomposites (I). J. Appl. Polym. Sci. 106, 2970–2977 (2007)Google Scholar
  142. 142.
    Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005)Google Scholar
  143. 143.
    Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010)Google Scholar
  144. 144.
    Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose: the natural power to heal wounds. Biomaterials 27, 145–151 (2006)Google Scholar
  145. 145.
    Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007)Google Scholar
  146. 146.
    Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. Eastern Eur. 12, 69–72 (2004)Google Scholar
  147. 147.
    Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004)Google Scholar
  148. 148.
    Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite. U.S. Pat. Appl. Publ. US 2005037082 A1, 16 (2005)Google Scholar
  149. 149.
    Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006)Google Scholar
  150. 150.
    Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006)Google Scholar
  151. 151.
    Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)Google Scholar
  152. 152.
    Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006)Google Scholar
  153. 153.
    Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006)Google Scholar
  154. 154.
    Grande, C.J., Torres, F.G., Gomez, C.M., Bañó, C.: Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5, 1605–1615 (2009)Google Scholar
  155. 155.
    Samir, M.A.S., Alloin, F., Sanchez, J.-Y., Dufresne, A.: Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37, 4839–4844 (2004)Google Scholar
  156. 156.
    Nystrom, G., Razaq, A., Stromme, M., Nyholm, L., Mihranyan, A.: Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009)Google Scholar
  157. 157.
    Razaq, A., Mihranyan, A., Welch, K., Nyholm, L., Strømme, M.: Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites. J. Phys. Chem. B 113, 426–433 (2009)Google Scholar
  158. 158.
    Gelin, K., Mihranyan, A., Razaq, A., Nyholm, L., Strømme, M.: Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim. Acta 54, 3394–3401 (2009)Google Scholar
  159. 159.
    Stromme, M., Frenning, G., Razaq, A., Gelin, K., Nyholm, L., Mihranyan, A.: Ionic motion in polypyrrole—cellulose composites: trap release mechanism during potentiostatic reduction. J. Phys. Chem. B 113, 4582–4589 (2009)Google Scholar
  160. 160.
    Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005)Google Scholar
  161. 161.
    Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007)Google Scholar
  162. 162.
    Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005)Google Scholar
  163. 163.
    Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007)Google Scholar
  164. 164.
    Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008)Google Scholar
  165. 165.
    Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008)Google Scholar
  166. 166.
    van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J. Mater. Chem. 17, 2746–2753 (2007)Google Scholar
  167. 167.
    Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006)Google Scholar
  168. 168.
    Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T.: Cellulose nanopaper structures of high toughness. Biomacromolecules 9, 1579–1585 (2008)Google Scholar
  169. 169.
    Sehaqui, H., Liu, H., Zhou, Q., Berglund, L.A.: Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11, 2195–2198 (2010)Google Scholar
  170. 170.
    Shin, Y., Exarhos, G.J.: Template synthesis of porous Titania using cellulose nanocrystals. Mater. Lett. 61, 2594–2597 (2007)Google Scholar
  171. 171.
    Dujardin, E., Blaseby, M., Mann, S.: Synthesis of Mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J. Mater. Chem. 13, 696–699 (2003)Google Scholar
  172. 172.
    Araki, J., Kuga, S.: Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17, 4493–4496 (2001)Google Scholar
  173. 173.
    Roman, M., Winter, W.T.: Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671–1677 (2004)Google Scholar
  174. 174.
    Araki, J., Wada, M., Kuga, S.: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21–27 (2001)Google Scholar
  175. 175.
    Dong, X.M., Kimura, T., Revol, J.-F., Gray, D.G.: Effects of ionic strength on the isotropic—chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076–2082 (1996)Google Scholar
  176. 176.
    de Menezes, A.J., Siqueira, G., Curvelo, A., Dufresne, A.: Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50, 4552–4563 (2009)Google Scholar
  177. 177.
    Garcia de Rodriguez, N.L., Thielemans, W., Dufresne, A.: Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006)Google Scholar
  178. 178.
    Revol, J.F.: On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr. Polym. 2, 123–134 (1982)Google Scholar
  179. 179.
    Araki, J., Wada, M., Kuga, S., Okano, T.: Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood Sci. 45, 258–261 (1999)Google Scholar
  180. 180.
    Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C.: Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10, 712–716 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. G. Torres
    • 1
  • O. P. Troncoso
    • 1
  • C. Torres
    • 1
  • C. J. Grande
    • 1
  1. 1.Department of Mechanical EngineeringCatholic University of Peru. Av. UniversitariaLimaPeru

Personalised recommendations