Partial Realization in Dynamic Justification Logic

  • Samuel Bucheli
  • Roman Kuznets
  • Thomas Studer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6642)


Justification logic is an epistemic framework that provides a way to express explicit justifications for the agent’s belief. In this paper, we present OPAL, a dynamic justification logic that includes term operators to reflect public announcements on the level of justifications. We create dynamic epistemic semantics for OPAL. We also elaborate on the relationship of dynamic justification logics to Gerbrandy–Groeneveld’s PAL by providing a partial realization theorem.


Modal Logic Deductive System Canonical Model Modus Ponens Public Announcement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artemov, S.N.: Justified common knowledge. Theoretical Computer Science 357(1-3), 4–22 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artemov, S.N.: The logic of justification. The Review of Symbolic Logic 1(4), 477–513 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artemov, S.N.: Tracking evidence. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 61–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Artemov, S.N., Kuznets, R.: Logical omniscience as a computational complexity problem. In: Heifetz, A. (ed.) Proc. of TARK 2009, pp. 14–23. ACM, New York (2009)Google Scholar
  5. 5.
    Brezhnev, V.N.: On explicit counterparts of modal logics. Technical Report CFIS 2000–05. Cornell University (2000)Google Scholar
  6. 6.
    Brünnler, K., Goetschi, R., Kuznets, R.: A syntactic realization theorem for justification logics. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 39–58. College Publications (2010)Google Scholar
  7. 7.
    Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) Proc. of the Second ILCLI International Workshop on Logic and Philosophy of Knowledge, Communication and Action, pp. 135–155. University of the Basque Country Press (2010)Google Scholar
  8. 8.
    Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. To appear in the Journal of Applied Non-Classical Logics (2011)Google Scholar
  9. 9.
    Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fitting, M.: The realization theorem for S5, a simple, constructive proof. In: Gupta, A., van Benthem, J. (eds.) Proc. of the Second Indian Conference on Logic and Its Relationship with Other Disciplines (2009) (forthcoming)Google Scholar
  11. 11.
    Fitting, M.: Realizations and LP. Annals of Pure and Applied Logic 161(3), 368–387 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis. Institute for Logic, Language, and Computation, University of Amsterdam (1999)Google Scholar
  13. 13.
    Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of Logic, Language and Information 6(2), 147–169 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007); Reprinted from Emrich, M.L., et al. (eds.) Proc. of ISMIS 1989, pp. 201–216. Oak Ridge National Laboratory, ORNL/DSRD-24 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Renne, B.: Dynamic Epistemic Logic with Justification. PhD thesis. CUNY Graduate Center (2008)Google Scholar
  16. 16.
    Renne, B.: Evidence elimination in multi-agent justification logic. In: Heifetz, A. (ed.) Proc. of TARK 2009, pp. 227–236. ACM, New York (2009)Google Scholar
  17. 17.
    Renne, B.: Public communication in justification logic. Journal of Logic and Computation, Advance Access (July 2010)Google Scholar
  18. 18.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. In: Synthese Library, vol. 337. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Samuel Bucheli
    • 1
  • Roman Kuznets
    • 1
  • Thomas Studer
    • 1
  1. 1.Institut für Informatik und angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations