Untestable Properties in the Kahr-Moore-Wang Class

  • Charles Jordan
  • Thomas Zeugmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6642)

Abstract

Property testing is a kind of randomized approximation in which one takes a small, random sample of a structure and wishes to determine whether the structure satisfies some property or is far from satisfying the property. We focus on the testability of classes of first-order expressible properties, and in particular, on the classification of prefix-vocabulary classes for testability. The main result is the untestability of [ ∀ ∃ ∀ ,(0,1)]=. This is a well-known class and minimal for untestability. We discuss what is currently known about the classification for testability and briefly compare it to other classifications.

Keywords

property testing logic randomized algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Blais, E.: Testing Boolean function isomorphism. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 394–405. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite-automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fischer, E.: The art of uninformed decisions. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)MATHGoogle Scholar
  8. 8.
    Fischer, E., Matsliah, A.: Testing graph isomorphism. SIAM J. Comput. 38(1), 207–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parametrized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  10. 10.
    Goldreich, O.: Introduction to testing graph properties. Technical Report TR10-082, Electronic Colloquium on Computational Complexity (ECCC) (May 2010)Google Scholar
  11. 11.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jordan, C., Zeugmann, T.: Relational properties expressible with one universal quantifier are testable. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 141–155. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Jordan, C., Zeugmann, T.: A note on the testability of Ramsey’s class. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 296–307. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Jordan, C., Zeugmann, T.: Untestable properties expressible with four first-order quantifiers. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 333–343. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀ ∃ ∀ case. Proc. Nat. Acad. Sci. U.S.A. 48, 365–377 (1962)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kolaitis, P.G., Vardi, M.Y.: 0-1 laws for fragments of existential second-order logic: A survey. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 84–98. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    McNaughton, R., Papert, S.: Counter-Free Automata. M.I.T. Press, Cambridge (1971)MATHGoogle Scholar
  18. 18.
    Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Handbook of Randomized Computing, vol. II, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  19. 19.
    Ron, D.: Property testing: A learning theory perspective. Found. Trends Mach. Learn. 1(3), 307–402 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput. Sci. 5(2), 73–205 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Vedø, A.: Asymptotic probabilities for second-order existential Kahr-Moore-Wang sentences. J. Symbolic Logic 62(1), 304–319 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227. IEEE Computer Society, Los Alamitos (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Charles Jordan
    • 1
  • Thomas Zeugmann
    • 1
  1. 1.Division of Computer ScienceHokkaido UniversitySapporoJapan

Personalised recommendations