On Relationship of Computational Diffie-Hellman Problem and Computational Square-Root Exponent Problem

  • Fangguo Zhang
  • Ping Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6639)


The Computational Square-Root Exponent Problem (CSREP), which is a problem to compute a value whose discrete logarithm is a square root of the discrete logarithm of a given value, was proposed in the literature to show the reduction between the discrete logarithm problem and the factoring problem. The CSREP was also used to construct certain cryptography systems. In this paper, we analyze the complexity of the CSREP, and show that under proper conditions the CSREP is polynomial-time equivalent to the Computational Diffie-Hellman Problem (CDHP). We also demonstrate that in group G with certain prime order p, the DLP, CDHP and CSREP may be polynomial time equivalent with respect to the computational reduction for the first time in the literature.


Diffie-Hellman problem square Diffie-Hellman problem square-root exponent problem equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Burmester, M., Desmedt, Y.G., Seberry, J.: Equitable key escrow with limited time span (or, how to enforce time expiration cryptographically). In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Diffie, W., Hellman, M.: New Directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    FIPS 186-2, Digital signature standard, Federal Information Processing Standards Publication 186-2 (February 2000)Google Scholar
  6. 6.
    Konoma, C., Mambo, M., Shizuya, H.: Complexity analysis of the cryptographic primitive problems through square-root exponent. IEICE Trans. Fundamentals E87-A(5), 1083–1091 (2004)Google Scholar
  7. 7.
    Konoma, C., Mambo, M., Shizuya, H.: The computational difficulty of solving cryptographic primitive problems related to the discrete logarithm problem. IEICE Trans. Fundamentals E88-A(1), 81–88 (2005)CrossRefGoogle Scholar
  8. 8.
    Maurer, U.M.: Towards the equivalence of breaking the diffie-hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Maurer, U.M., Wolf, S.: Diffie-hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Maurer, U.M., Wolf, S.: The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms. SIAM J. Comput. 28(5), 1689–1721 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Maurer, U.M., Wolf, S.: The Diffie-Hellman protocol. Designs Codes and Cryptography 19, 147–171 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McCurley, K.: The discrete logarithm problem. In: Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)Google Scholar
  13. 13.
    Muzereau, A., Smart, N.P., Vrecauteren, F.: The equivalence between the DHP and DLP for elliptic curves used in practical applications. LMS J. Comput. Math. 7(2004), 50–72 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Peralta, R.: A simple and fast probabilistic algorithm for computing square roots modulo a prime number. IEEE Trans. on Information Theory 32(6), 846–847 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE-Transactions on Information Theory 24, 106–110 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: Why subtleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 244–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, F., Chen, X., Susilo, W., Mu, Y.: A new signature scheme without random oracles from bilinear pairings. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 67–80. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Chen, X., Wei, B.: Efficient designated confirmer signature from bilinear pairings. In: ASIACCS 2008, pp. 363–368 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fangguo Zhang
    • 1
  • Ping Wang
    • 1
  1. 1.School of Information Science and TechnologySun Yat-Sen UniversityGuangzhouChina

Personalised recommendations