The Minimum Distance of Graph Codes

  • Tom Høholdt
  • Jørn Justesen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6639)


We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other geometries. We give results on the minimum distances of the codes.


Graph codes Euclidean and projective geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanner, M.: A Recursive Approach to Low Complexity Codes. IEEE Trans. Inform. Theory 27, 533–547 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zémor, G.: On expander codes. IEEE Trans. Inform. Theory (Special Issue on Codes on Graphs and iterative Algorithms) 47, 835–837 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barg, A., Zémor, G.: Error exponents of expander codes. IEEE Trans. Inform. Theory 48, 1725–1729 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tanner, M.: Explicit Concentrators from Generalized N-Gons. SIAM J. Alg. Disc. Meth. 5(3), 287–293 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tanner, M.: Minimum-Distance Bounds by Graph Analysis. IEEE Trans. Inform. Theory 47, 808–821 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Sipser, M., Spielman, D.A.: Expander Codes. IEEE Trans. Inform. Theory 42(6), 1710–1722 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs, vol. 55. London Mathematical Society, Student Texts (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  9. 9.
    Janwa, H., Lal, A.K.: On Tanner Codes: Minimum Distance and Decoding. AAECC 13, 335–347 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Roth, R.M., Skachek, V.: Improved Nearly-MDS Expander Codes. IEEE Trans. Inform. Theory 52(8), 3650–3661 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Skachek, V.: Low-Density-Parity-Check Codes: Constructions and Bounds, Ph.D. Thesis, Technion, Haifa, Israel (January 2007)Google Scholar
  12. 12.
    Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. Algebra 1, 114–131 (1964)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    van Maldeghem, H.: Generalized Polygons. Birkhäuser-Verlag, Basel (1998)CrossRefMATHGoogle Scholar
  14. 14.
    Blake, I.A., Mullin, R.C.: The Mathematical Theory of Coding. Academic Press, New York (1975)MATHGoogle Scholar
  15. 15.
    Lauritzen, N.: Concrete Abstract Algebra. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  16. 16.
    Blahut, R.E.: Algebraic Codes on Lines, Planes, and Curves. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Høholdt, T., Justesen, J.: Graph codes with Reed-Solomon component codes. In: Proceedings ISIT 2006, Seattle, Washington, pp. 2022–2026 (July 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tom Høholdt
    • 1
  • Jørn Justesen
    • 1
  1. 1.Department of MathematicsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations