Reactive Answer Set Programming

  • Martin Gebser
  • Torsten Grote
  • Roland Kaminski
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

We introduce the first approach to Reactive Answer Set Programming, aiming at reasoning about real-time dynamic systems running online in changing environments. We start by laying the theoretical foundations by appeal to module theory. With this, we elaborate upon the composition of the various offline and online programs in order to pave the way for stream-driven grounding and solving. Finally, we describe the implementation of a reactive ASP solver, oclingo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo, http://potassco.sourceforge.net
  4. 4.
    Syrjänen, T.: Lparse 1.0 user’s manual, http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
  5. 5.
    Reiter, R.: Knowledge in Action. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Balduccini, M., Gelfond, M.: The autonomous agent architecture. Newsletter ALP 23 (2010)Google Scholar
  7. 7.
    Son, T., Lobo, J.: Reasoning about policies using logic programs. In: ASP 2001. AAAI/The MIT Press (2001)Google Scholar
  8. 8.
    Mileo, A., Merico, D., Bisiani, R.: Non-monotonic reasoning supporting wireless sensor networks for intelligent monitoring: The SINDI system. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 585–590. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: ECAI 2006, pp. 412–416. IOS Press, Amsterdam (2006)Google Scholar
  11. 11.
  12. 12.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in TCS 89(4) (2003)Google Scholar
  13. 13.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  14. 14.
    Mileo, A., Schaub, T., Merico, D., Bisiani, R.: Knowledge-based multi-criteria optimization to support indoor positioning. In: RCRA 2010, CEUR-WS.org (2010)Google Scholar
  15. 15.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2010)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Gebser
    • 1
  • Torsten Grote
    • 1
  • Roland Kaminski
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institut für InformatikUniversität PotsdamGermany

Personalised recommendations