The Third Answer Set Programming Competition: Preliminary Report of the System Competition Track

  • Francesco Calimeri
  • Giovambattista Ianni
  • Francesco Ricca
  • Mario Alviano
  • Annamaria Bria
  • Gelsomina Catalano
  • Susanna Cozza
  • Wolfgang Faber
  • Onofrio Febbraro
  • Nicola Leone
  • Marco Manna
  • Alessandra Martello
  • Claudio Panetta
  • Simona Perri
  • Kristian Reale
  • Maria Carmela Santoro
  • Marco Sirianni
  • Giorgio Terracina
  • Pierfrancesco Veltri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

Answer Set Programming is a well-established paradigm of declarative programming in close relationship with other declarative formalisms such as SAT Modulo Theories, Constraint Handling Rules, FO(.), PDDL and many others. Since its first informal editions, ASP systems are compared in the nowadays customary ASP Competition. The Third ASP Competition, as the sequel to the ASP Competitions Series held at the University of Potsdam in Germany (2006-2007) and at the University of Leuven in Belgium in 2009, took place at the University of Calabria (Italy) in the first half of 2011. Participants competed on a selected collection of declarative specifications of benchmark problems, taken from a variety of domains as well as real world applications, and instances thereof. The Competition ran on two tracks: the Model & Solve Competition, held on an open problem encoding, on an open language basis, and open to any kind of system based on a declarative specification paradigm; and the System Competition, held on the basis of fixed, public problem encodings, written in a standard ASP language. This paper briefly discuss the format and rationale of the System competition track, and preliminarily reports its results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Contstraint Handling Rules, http://dtai.cs.kuleuven.be/CHR/
  2. 2.
    Core language for asp solver competitions. Minutes of the steering committee meeting at LPNMR (2004), https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf
  3. 3.
    The CADE ATP System Competition, http://www.cs.miami.edu/~tptp/CASC/
  4. 4.
    The Satisfiability Modulo Theories Library, http://www.smtlib.org/
  5. 5.
    Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs. Tech. Report 09/2009, Dipartimento di Matematica, Università della Calabria, Italy (2009), http://www.wfaber.com/research/papers/TRMAT092009.pdf
  6. 6.
    Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to Answer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 95–109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Implement Logic Programs. In: PODS 1986, Cambridge, Massachusetts, pp. 1–15 (1986)Google Scholar
  8. 8.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. In: CUP (2003)Google Scholar
  9. 9.
    Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed Integer Programming Methods for Computing Nonmonotonic Deductive Databases. JACM 41, 1178–1215 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ben-Eliyahu-Zohary, R., Palopoli, L.: Reasoning with Minimal Models: Efficient Algorithms and Applications. AI 96, 421–449 (1997)MathSciNetMATHGoogle Scholar
  11. 11.
    Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE TKDE 9(3), 448–463 (1997)Google Scholar
  12. 12.
    Calimeri, F., Ianni, G., Ricca, F.: Third ASP Competition, File and language formats (2011), http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
  13. 13.
    Calimeri, F., Ianni, G., Ricca, F., The Università della Calabria Organizing Committee: The Third Answer Set Programming Competition homepage (2011), http://www.mat.unical.it/aspcomp2011/
  14. 14.
    Cumbo, C., Faber, W., Greco, G.: Improving Query Optimization for Disjunctive Datalog. In: Proceedings of the Joint Conference on Declarative Programming APPIA-GULP-PRODE 2003, pp. 252–262 (2003)Google Scholar
  15. 15.
    Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy grounding. FI 96(3), 297–322 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  17. 17.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed Nonmonotonic Multi-Context Systems. In: 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), Toronto, Canada, May 9-13, pp. 60–70. AAAI Press, Menlo Park (2010)Google Scholar
  18. 18.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Drescher, C., Gebser, M., Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 422–432. AAAI Press, Sydney (2008)Google Scholar
  21. 21.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV System. In: Logic-Based Artificial Intelligence, pp. 79–103 (2000)Google Scholar
  23. 23.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)CrossRefGoogle Scholar
  24. 24.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Reasoning Web. Semantic Technologies for Information Systems, 5th International Summer School - Tutorial Lectures, Brixen-Bressanone, Italy, August 2009, pp. 40–110 (2009)Google Scholar
  25. 25.
    Ellguth, E., Gebser, M., Gusowski, M., Kaufmann, B., Kaminski, R., Liske, S., Schaub, T., Schneidenbach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 490–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configuration Problems. In: Proceedings of ECAI 2010 Workshop on Configuration, Lisbon, Portugal, pp. 40–46 (2010)Google Scholar
  27. 27.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  28. 28.
    Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting Inconsistencies in Large Biological Networks with Answer Set Programming. TPLP 11(2), 1–38 (2011)MathSciNetMATHGoogle Scholar
  30. 30.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392 (2007)Google Scholar
  31. 31.
    Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Gebser, M., Schaub, T., Thiele, S.: grinGo: A new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog perspective. AI 138(1-2), 3–38 (2002)MathSciNetMATHGoogle Scholar
  34. 34.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. NGC 9, 365–385 (1991)CrossRefMATHGoogle Scholar
  35. 35.
    Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3 - the language of the fifth international planning competition. Technical report (2005), http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-ipc5.pdf
  36. 36.
    Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cambridge (1989)MATHGoogle Scholar
  37. 37.
    Janhunen, T.: Some (in)translatability results for normal logic programs and propositional theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Janhunen, T., Niemelä, I.: GNT — A solver for disjunctive logic programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–335. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  39. 39.
    Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding Partiality and Disjunctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Janhunen, T., Niemelä, I., Sevalnev, M.: Computing Stable Models via Reductions to Difference Logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 142–154. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04238-6_14CrossRefGoogle Scholar
  41. 41.
    Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: aSPeRiX. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  42. 42.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  44. 44.
    Lierler, Y.: Abstract Answer Set Solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  45. 45.
    Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  46. 46.
    Lifschitz, V.: Answer Set Planning. In: ICLP 1999, Las Cruces, New, Mexico, USA, pp. 23–37 (1999)Google Scholar
  47. 47.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. AI 157(1-2), 115–137 (2004)MathSciNetMATHGoogle Scholar
  48. 48.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398 (1999)Google Scholar
  49. 49.
    Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A System for Answer Set Programming. In: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning, NMR 2000 (2000), http://xxx.lanl.gov/abs/cs/0003033v1
  50. 50.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  51. 51.
    Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. AI 138, 181–234 (2002)MathSciNetMATHGoogle Scholar
  52. 52.
    Subrahmanian, V.S., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE TKDE 7(3), 362–377 (1995)Google Scholar
  53. 53.
    Wittocx, J., Mariën, M., Denecker, M.: The idp system: a model expansion system for an extension of classical logic. In: Logic and Search, Computation of Structures from Declarative Descriptions, LaSh 2008, Leuven, Belgium, pp. 153–165 (2008)Google Scholar
  54. 54.
    Ziller, S., Gebser, M., Kaufmann, B., Schaub, T.: An Introduction to claspfolio. Institute of Computer Science, University of Potsdam, Germany (2010), http://www.cs.uni-potsdam.de/claspfolio/manual.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francesco Calimeri
    • 1
  • Giovambattista Ianni
    • 1
  • Francesco Ricca
    • 1
  • Mario Alviano
    • 1
  • Annamaria Bria
    • 1
  • Gelsomina Catalano
    • 1
  • Susanna Cozza
    • 1
  • Wolfgang Faber
    • 1
  • Onofrio Febbraro
    • 1
  • Nicola Leone
    • 1
  • Marco Manna
    • 1
  • Alessandra Martello
    • 1
  • Claudio Panetta
    • 1
  • Simona Perri
    • 1
  • Kristian Reale
    • 1
  • Maria Carmela Santoro
    • 1
  • Marco Sirianni
    • 1
  • Giorgio Terracina
    • 1
  • Pierfrancesco Veltri
    • 1
  1. 1.Dipartimento di MatematicaUniversità della CalabriaItaly

Personalised recommendations