plasp: A Prototype for PDDL-Based Planning in ASP

  • Martin Gebser
  • Roland Kaminski
  • Murat Knecht
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)


We present a prototypical system, plasp, implementing Planning by compilation to Answer Set Programming (ASP). Our approach is inspired by Planning as Satisfiability, yet it aims at keeping the actual compilation simple in favor of modeling planning techniques by meta-programming in ASP. This has several advantages. First, ASP modelings are easily modifiable and can be studied in a transparent setting. Second, we can take advantage of available ASP grounders to obtain propositional representations. Third, we can harness ASP solvers providing incremental solving mechanisms. Finally, the ASP community gains access to a wide range of planning problems, and the planning community benefits from the knowledge representation and reasoning capacities of ASP.


Planning Problem Operator Splitting Concurrent Action Propositional Representation Automate Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  2. 2.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363. Wiley, Chichester (1992)Google Scholar
  5. 5.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), pp. 1194–1201. AAAI/MIT Press (1996)Google Scholar
  6. 6.
    McDermott, D.: PDDL — the planning domain definition language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)Google Scholar
  7. 7.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Rintanen, J., Heljanko, K., Niemelä, I.: Parallel encodings of classical planning as satisfiability. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 307–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 374–384. Morgan Kaufmann, San Francisco (1996)Google Scholar
  10. 10.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90(1-2), 279–298 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Robinson, N., Gretton, C., Pham, D., Sattar, A.: SAT-based parallel planning using a split representation of actions. In: Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009), pp. 281–288. AAAI Press, Menlo Park (2009)Google Scholar
  12. 12.
    Hsu, C., Wah, B., Huang, R., Chen, Y.: Constraint partitioning for solving planning problems with trajectory constraints and goal preferences. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1924–1929. AAAI/MIT Press (2007)Google Scholar
  13. 13.
    Sideris, A., Dimopoulos, Y.: Constraint propagation in propositional planning. In: Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010), pp. 153–160. AAAI Press, Menlo Park (2010)Google Scholar
  14. 14.
    Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62–72 (2005)Google Scholar
  15. 15.
    Thielscher, M.: Answer set programming for single-player games in general game playing. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 327–341. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Thielscher, M., Voigt, S.: A temporal proof system for general game playing. In: Proceedings of the Twenty-fourth National Conference on Artificial Intelligence (AAAI 2010), pp. 1000–1005. AAAI Press, Menlo Park (2010)Google Scholar
  17. 17.
    Smith, D., Weld, D.: Conformant Graphplan. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI 1998), pp. 889–896. AAAI/MIT Press (1998)Google Scholar
  18. 18.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning. Artificial Intelligence 144(1-2), 157–211 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Gebser
    • 1
  • Roland Kaminski
    • 1
  • Murat Knecht
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institut für InformatikUniversität PotsdamGermany

Personalised recommendations