Modularity of P-Log Programs

  • Carlos Viegas Damásio
  • João Moura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

We propose an approach for modularizing P-log programs and corresponding compositional semantics based on conditional probability measures. We do so by resorting to Oikarinen and Janhunen’s definition of a logic program module and extending it to P-log by introducing the notions of input random attributes and output literals. For answering to P-log queries our method does not imply calculating all the stable models (possible worlds) of a given program, and previous calculations can be reused. Our proposal also handles probabilistic evidence by conditioning (observations).

Keywords

P-log Answer Set Programming Modularization Probabilistic Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anh, H.T., Kencana Ramli, C.D.P., Damásio, C.V.: An implementation of extended P-log using XASP. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 739–743. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. TPLP 9(1), 57–144 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Baral, C., Hunsaker, M.: Using the probabilistic logic programming language P-log for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 243–249. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  5. 5.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Programming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–159. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In: POPL 1989: Proc. of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 134–142. ACM, New York (1989)Google Scholar
  7. 7.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the Fifth International Conference and Symposium (ICLP/SLP), pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  8. 8.
    Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning. In: Proc. of AAAI 2006 Spring Symposium: Formalizing AND Compiling Background Knowledge AND Its Applications to Knowledge Representation AND Question Answering, pp. 50–55. AAAI Press, Menlo Park (2006)Google Scholar
  9. 9.
    Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press, Cambridge (2005)MATHGoogle Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Kemper, P. (ed.) Proc. Tools Session of Aachen 2001 International Multiconference on Measurement, Modelling and Evaluation of Computer-Communication Systems, pp. 7–12 (September 2001)Google Scholar
  11. 11.
    Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)Google Scholar
  13. 13.
    Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for smodels programs. Theory Pract. Log. Program. 8(5-6) (2008)Google Scholar
  14. 14.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)MATHGoogle Scholar
  15. 15.
    Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge Univ. Press, Cambridge (2000)MATHGoogle Scholar
  16. 16.
    Pfeffer, A., Koller, D.: Semantics and inference for recursive probability models. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 538–544. AAAI Press, Menlo Park (2000)Google Scholar
  17. 17.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94, 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. J. Artif. Int. Res. 18, 263–313 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)MATHGoogle Scholar
  20. 20.
    Zhang, N., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Viegas Damásio
    • 1
  • João Moura
    • 1
  1. 1.CENTRIA, Departamento de InformáticaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations