Modularity of P-Log Programs

  • Carlos Viegas Damásio
  • João Moura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)


We propose an approach for modularizing P-log programs and corresponding compositional semantics based on conditional probability measures. We do so by resorting to Oikarinen and Janhunen’s definition of a logic program module and extending it to P-log by introducing the notions of input random attributes and output literals. For answering to P-log queries our method does not imply calculating all the stable models (possible worlds) of a given program, and previous calculations can be reused. Our proposal also handles probabilistic evidence by conditioning (observations).


P-log Answer Set Programming Modularization Probabilistic Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anh, H.T., Kencana Ramli, C.D.P., Damásio, C.V.: An implementation of extended P-log using XASP. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 739–743. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. TPLP 9(1), 57–144 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Baral, C., Hunsaker, M.: Using the probabilistic logic programming language P-log for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 243–249. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  5. 5.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Programming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–159. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In: POPL 1989: Proc. of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 134–142. ACM, New York (1989)Google Scholar
  7. 7.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the Fifth International Conference and Symposium (ICLP/SLP), pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  8. 8.
    Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning. In: Proc. of AAAI 2006 Spring Symposium: Formalizing AND Compiling Background Knowledge AND Its Applications to Knowledge Representation AND Question Answering, pp. 50–55. AAAI Press, Menlo Park (2006)Google Scholar
  9. 9.
    Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press, Cambridge (2005)MATHGoogle Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Kemper, P. (ed.) Proc. Tools Session of Aachen 2001 International Multiconference on Measurement, Modelling and Evaluation of Computer-Communication Systems, pp. 7–12 (September 2001)Google Scholar
  11. 11.
    Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)Google Scholar
  13. 13.
    Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for smodels programs. Theory Pract. Log. Program. 8(5-6) (2008)Google Scholar
  14. 14.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)MATHGoogle Scholar
  15. 15.
    Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge Univ. Press, Cambridge (2000)MATHGoogle Scholar
  16. 16.
    Pfeffer, A., Koller, D.: Semantics and inference for recursive probability models. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 538–544. AAAI Press, Menlo Park (2000)Google Scholar
  17. 17.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94, 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. J. Artif. Int. Res. 18, 263–313 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)MATHGoogle Scholar
  20. 20.
    Zhang, N., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Viegas Damásio
    • 1
  • João Moura
    • 1
  1. 1.CENTRIA, Departamento de InformáticaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations