Itemset Mining as a Challenge Application for Answer Set Enumeration

  • Matti Järvisalo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

We present an initial exploration into the possibilities of applying current state-of-the-art answer set programming (ASP) tools—esp. conflict-driven answer set enumeration—for mining itemsets in 0-1 data. We evaluate a simple ASP-based approach experimentally and compare it to a recently proposed framework exploiting constraint programming (CP) solvers for itemset mining.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: Proc. KDD, pp. 204–212. ACM, New York (2008)Google Scholar
  3. 3.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: Proc. AAAI. AAAI Press, Menlo Park (2010)Google Scholar
  4. 4.
    Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: MAFIA: A maximal frequent itemset algorithm. IEEE Trans. Knowl. Data Eng. 17(11), 1490–1504 (2005)CrossRefGoogle Scholar
  5. 5.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (2008), http://potassco.sourceforge.net/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matti Järvisalo
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations