Gentzen-Type Refutation Systems for Three-Valued Logics with an Application to Disproving Strong Equivalence

  • Johannes Oetsch
  • Hans Tompits
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

While the purpose of conventional proof calculi is to axiomatise the set of valid sentences of a logic, refutation systems axiomatise the invalid sentences. Such systems are relevant not only for proof-theoretic reasons but also for realising deductive systems for nonmonotonic logics. We introduce Gentzen-type refutation systems for two basic three-valued logics and we discuss an application of one of these calculi for disproving strong equivalence between answer-set programs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Łukasiewicz, J.: Aristotle’s syllogistic from the standpoint of modern formal logic, 2nd edn. Clarendon Press, Oxford (1957)MATHGoogle Scholar
  2. 2.
    Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung 3, 74–78 (1957)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wójcicki, R.: Dual counterparts of consequence operations. Bulletin of the Section of Logic 2, 54–57 (1973)MathSciNetGoogle Scholar
  4. 4.
    Tiomkin, M.: Proving unprovability. In: 3rd Annual Symposium on Logics in Computer Science, pp. 22–27. IEEE, Los Alamitos (1988)Google Scholar
  5. 5.
    Bonatti, P.A.: A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität Wien (1993)Google Scholar
  6. 6.
    Goranko, V.: Refutation systems in modal logic. Studia Logica 53, 299–324 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Skura, T.: Refutations and proofs in S4. In: Proof Theory of Modal Logic, pp. 45–51. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  8. 8.
    Skura, T.: A refutation theory. Logica Universalis 3, 293–302 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wybraniec-Skardowska, U.: On the notion and function of the rejection of propositions. Acta Universitatis Wratislaviensis Logika 23, 179–202 (2005)Google Scholar
  10. 10.
    Caferra, R., Peltier, N.: Accepting/rejecting propositions from accepted/rejected propositions: A unifying overview. International Journal of Intelligent Systems 23, 999–1020 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3, 226–278 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transactions on Computational Logic 2, 340–387 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Avron, A.: Natural 3-valued logics - Characterization and proof theory. Journal of Symbolic Logic 56 (1), 276–294 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse 32, 65–66 (1932)MATHGoogle Scholar
  15. 15.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bryll, G., Maduch, M.: Aksjomaty odrzucone dla wielowartościowych logik Łukasiewicza. In: Zeszyty Naukowe Wyższej Szkły Pedagogigicznej w Opolu, Matematyka VI, Logika i algebra, pp. 3–17 (1968)Google Scholar
  17. 17.
    Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: 31st IEEE International Symposium on Multiple-Valued Logic, pp. 287–298. IEEE, Los Alamitos (2001)CrossRefGoogle Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Johannes Oetsch
    • 1
  • Hans Tompits
    • 1
  1. 1.Institut für Informationssysteme 184/3Technische Universität WienViennaAustria

Personalised recommendations