Integrating Rules and Ontologies in the First-Order Stable Model Semantics (Preliminary Report)

  • Joohyung Lee
  • Ravi Palla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)


We present an approach to integrating rules and ontologies on the basis of the first-order stable model semantics defined by Ferraris, Lee and Lifschitz. We show that a few existing integration proposals can be uniformly related to the first-order stable model semantics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artificial Intelligence 172(12-13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web Sem. 3(1), 61–73 (2005)CrossRefGoogle Scholar
  3. 3.
    Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 68–78 (2006)Google Scholar
  4. 4.
    Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid knowledge bases. TPLP 8(3), 411–429 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A semantical framework for hybrid knowledge bases. Knowl. Inf. Syst. 25(1), 81–104 (2010)CrossRefGoogle Scholar
  6. 6.
    Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)Google Scholar
  7. 7.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175, 236–263 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bartholomew, M., Lee, J.: A decidable class of groundable formulas in the general theory of stable models. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 477–485 (2010)Google Scholar
  9. 9.
    Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fink, M., Pearce, D.: A logical semantics for description logic programs. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 156–168. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joohyung Lee
    • 1
  • Ravi Palla
    • 1
  1. 1.School of Computing, Informatics and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations