Integrating Rules and Ontologies in the First-Order Stable Model Semantics (Preliminary Report)

  • Joohyung Lee
  • Ravi Palla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

We present an approach to integrating rules and ontologies on the basis of the first-order stable model semantics defined by Ferraris, Lee and Lifschitz. We show that a few existing integration proposals can be uniformly related to the first-order stable model semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artificial Intelligence 172(12-13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web Sem. 3(1), 61–73 (2005)CrossRefGoogle Scholar
  3. 3.
    Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 68–78 (2006)Google Scholar
  4. 4.
    Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid knowledge bases. TPLP 8(3), 411–429 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A semantical framework for hybrid knowledge bases. Knowl. Inf. Syst. 25(1), 81–104 (2010)CrossRefGoogle Scholar
  6. 6.
    Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)Google Scholar
  7. 7.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175, 236–263 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bartholomew, M., Lee, J.: A decidable class of groundable formulas in the general theory of stable models. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 477–485 (2010)Google Scholar
  9. 9.
    Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fink, M., Pearce, D.: A logical semantics for description logic programs. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 156–168. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joohyung Lee
    • 1
  • Ravi Palla
    • 1
  1. 1.School of Computing, Informatics and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations