Contingency-Based Equilibrium Logic

  • Luis Fariñas del Cerro
  • Andreas Herzig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)


We investigate an alternative language for equilibrium logic that is based on the concept of positive and negative contingency. Beyond these two concepts our language has the modal operators of necessity and impossibility and the Boolean operators of conjunction and disjunction. Neither negation nor implication are available. Our language is just as expressive as the standard language of equilibrium logic (that is based on conjunction and intuitionistic implication).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellas, B.: Modal logic: An introduction. Cambridge University Press, Cambridge (1980)CrossRefMATHGoogle Scholar
  2. 2.
    Došen, K.: Models for stronger normal intuitionistic modal logics. Studia Logica 44, 39–70 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fariñas del Cerro, L., Raggio, A.: Some results in intuitionistic modal logic. Logique et Analyse 26(102), 219–224 (1983)MathSciNetMATHGoogle Scholar
  4. 4.
    Fariñas del Cerro, L., Herzig, A.: Combining classical and intuitionistic logic, or: intuitionistic implication as a conditional. In: Baader, F., Schulz, K.U. (eds.) Frontiers in Combining Systems. Applied Logic Series, vol. 3, pp. 93–102. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  5. 5.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuss. Akad. Wiss. 42-71, 158–169 (1930)MATHGoogle Scholar
  6. 6.
    Hughes, G.E., Cresswell, M.J.: An introduction to modal logic. Methuen&Co. Ltd., London (1968)MATHGoogle Scholar
  7. 7.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Vakarelov, D.: Notes on constructive logic with strong negation. Studia Logica 36, 110–125 (1977)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luis Fariñas del Cerro
    • 1
  • Andreas Herzig
    • 1
  1. 1.IRIT-CNRSUniversité de ToulouseFrance

Personalised recommendations