Strong Equivalence of Logic Programs with Abstract Constraint Atoms

  • Guohua Liu
  • Randy Goebel
  • Tomi Janhunen
  • Ilkka Niemelä
  • Jia-Huai You
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

Logic programs with abstract constraint atoms provide a unifying framework for studying logic programs with various kinds of constraints. Establishing strong equivalence between logic programs is a key property for program maintenance and optimization, and for guaranteeing the same behavior for a revised original program in any context. In this paper, we study strong equivalence of logic programs with abstract constraint atoms. We first give a general characterization of strong equivalence based on a new definition of program reduct for logic programs with abstract constraints. Then we consider a particular kind of program revision—constraint replacements addressing the question: under what conditions can a constraint in a program be replaced by other constraints, so that the resulting program is strongly equivalent to the original one.

References

  1. 1.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. ICLP, pp. 1070–1080 (1988)Google Scholar
  2. 2.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Math. and Artificial Intelligence 25(3-4), 241–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint atoms. TPLP 8(2), 167–199 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 167–179. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract constraint atoms. JAIR 29, 353–389 (2007)MathSciNetMATHGoogle Scholar
  6. 6.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7, 355–375 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)Google Scholar
  10. 10.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and convex constraints. JAIR 7, 299–334 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propositional logic. In: Proc. KR 2002, pp. 170–176 (2002)Google Scholar
  13. 13.
    Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory and Practice of Logic Programming 3, 609–622 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. TPLP 7(3), 301–353 (2007)MathSciNetMATHGoogle Scholar
  16. 16.
    Janhunen, T.: Sampler programs: The stable model semantics of abstract constraint programs revisited. In: Proc. ICLP, pp. 94–103 (2010)Google Scholar
  17. 17.
    Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences in answer set programming. ACM Transactions on Computational Logic 8(3) (2007)Google Scholar
  18. 18.
    Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Pelov, N.: Semantics of Logic Programs with Aggregates. PhD thesis, Ketholieke Universiteit Leuven (2004)Google Scholar
  20. 20.
    Pelov, N., Denecker, M., Bruynooghe, M.: Translation of aggregate programs to normal logic programs. In: Proc. ASP 2003, pp. 29–42 (2003)Google Scholar
  21. 21.
    Shen, Y., You, J., Yuan, L.: Characterizations of stable model semantics for logic programs with arbitrary constraint atoms. TPLP 9(4), 529–564 (2009)MathSciNetMATHGoogle Scholar
  22. 22.
    You, J., Liu, G.: Loop formulas for logic programs with arbitrary constraint atoms. In: Proc. AAAI 2008, pp. 584–589 (2008)Google Scholar
  23. 23.
    You, J., Yuan, L.Y., Liu, G., Shen, Y.: Logic programs with abstract constraints: Representation, disjunction and complexities. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 228–240. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Annals of Math. and AI 53(1-4), 251–287 (2008)MathSciNetMATHGoogle Scholar
  29. 29.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artificial. Intelligence. 172(12-13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Niemelä, I.: Integrating answer set programming and satisfiability modulo theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 3–3. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guohua Liu
    • 1
  • Randy Goebel
    • 2
  • Tomi Janhunen
    • 1
  • Ilkka Niemelä
    • 1
  • Jia-Huai You
    • 2
  1. 1.Department of Information and Computer ScienceAalto UniversityFinland
  2. 2.Department of Computing ScienceUniversity of AlbertaCanada

Personalised recommendations