Advertisement

Relational Information Exchange and Aggregation in Multi-Context Systems

  • Michael Fink
  • Lucantonio Ghionna
  • Antonius Weinzierl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6645)

Abstract

Multi-Context Systems (MCSs) are a powerful framework for representing the information exchange between heterogeneous (possibly nonmonotonic) knowledge-bases. Significant recent advancements include implementations for realizing MCSs, e.g., by a distributed evaluation algorithm and corresponding optimizations. However, certain enhanced modeling concepts like aggregates and the use of variables in bridge rules, which allow for more succinct representations and ease system design, have been disregarded so far.

We fill this gap introducing open bridge rules with variables and aggregate expressions, extending the semantics of MCSs correspondingly. The semantic treatment of aggregates allows for alternative definitions when so-called grounded equilibria of an MCS are considered. We discuss options in relation to well-known aggregate semantics in answer-set programming. Moreover, we develop an implementation by elaborating on the DMCS algorithm, and report initial experimental results.

Keywords

Logic Program Belief State Query Plan Ground Instance Stable Model Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., Bikakis, A., Papatheodorou, C.: Reasoning with imperfect context and preference information in multi-context systems. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bairakdar, S.E.D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of distributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 24–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI, pp. 385–390. AAAI Press, Menlo Park (2007)Google Scholar
  4. 4.
    Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI, pp. 268–273 (2007)Google Scholar
  5. 5.
    Buccafurri, F., Caminiti, G.: Logic programming with social features. TPLP 8(5-6), 643–690 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context systems. In: KR, pp. 60–70. AAAI Press, Menlo Park (2010)Google Scholar
  7. 7.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI, pp. 386–392 (2007)Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080 (1988)Google Scholar
  11. 11.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without modal logics. Artif. Intell. 65(1), 29–70 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Shen, Y.D., You, J.H., Yuan, L.Y.: Characterizations of stable model semantics for logic programs with arbitrary constraint atoms. TPLP 9(4), 529–564 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract constraint atoms. J. Artif. Intell. Res. (JAIR) 29, 353–389 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Syrjänen, T.: Lparse 1.0 user’s manual (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Fink
    • 1
  • Lucantonio Ghionna
    • 1
  • Antonius Weinzierl
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations