Generalized Satisfiability for the Description Logic \(\mathcal{ALC}\)

(Extended Abstract)
  • Arne Meier
  • Thomas Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6648)


The standard reasoning problem, concept satisfiability, in the basic description logic \(\mathcal{ALC}\) is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of \(\mathcal{ALC}\), notably logics in the \(\mathcal{FL}\), \(\mathcal{EL}\), and DL-Lite families, have an easier satisfiability problem; sometimes it is even tractable. We classify the complexity of the standard satisfiability problems for all possible Boolean and quantifier fragments of \(\mathcal{ALC}\) in the presence of general axioms.


Boolean Function Description Logic Linear Temporal Logic Boolean Operator Hybrid Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-order logic. In: Proc. AAAI, pp. 361–366 (2007)Google Scholar
  2. 2.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: Adding weight to DL-Lite. In: Proc. DL (2009),
  3. 3.
    Baader, F.: Using automata theory for characterizing the semantics of terminological cycles. Ann. Math. Artif. Intell. 18(2-4), 175–219 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proc. IJCAI, pp. 325–330 (2003)Google Scholar
  5. 5.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. IJCAI, pp. 364–369 (2005)Google Scholar
  6. 6.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope further. In: Proc. OWLED DC (2008)Google Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  8. 8.
    Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for Linear Temporal Logic. LMCS 5(1) (2009)Google Scholar
  9. 9.
    Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The Complexity of Propositional Implication. IPL 109(18), 1071–1077 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM-SIGACT Newsletter 34(4), 38–52 (2003)CrossRefGoogle Scholar
  11. 11.
    Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: Proc. ECAI, pp. 298–302 (2004)Google Scholar
  12. 12.
    Brandt, S.: Reasoning in \(\mathcal{ELH}\) w.r.t. general concept inclusion axioms. LTCS-Report LTCS-04-03, Dresden University of Technology, Germany (2004)Google Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. AAAI, pp. 602–607 (2005)Google Scholar
  14. 14.
    Donini, F.M.: Complexity of reasoning. In: Description Logic Handbook [7], pp. 96–136Google Scholar
  15. 15.
    Donini, F.M., Lenzerini, M., Nardi, D., Hollunder, B., Nutt, W., Marchetti-Spaccamela, A.: The complexity of existential quantification in concept languages. AI 53(2-3), 309–327 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. Inf. Comput. 134(1), 1–58 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Donini, F.M., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). AI 124(1), 87–138 (2000)zbMATHGoogle Scholar
  18. 18.
    Givan, R., McAllester, D., Wittny, C., Kozen, D.: Tarskian set constraints. Information and Computation 174, 105–131 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. CoRR, abs/0804.2729 (2008)Google Scholar
  20. 20.
    Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS, pp. 229–237 (2005)Google Scholar
  21. 21.
    Kazakov, Y., de Nivelle, H.: Subsumption of concepts in \(\mathcal{FL}_o\) for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. In: Proc. DL (2003),
  22. 22.
    Lewis, H.: Satisfiability problems for propositional calculi. Math. Sys. Theory 13, 45–53 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 181–200. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Weber, V., Weiss, F.: The complexity of satisfiability for fragments of hybrid logic—part I. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 587–599. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Meier, A., Schneider, T.: The complexity of satisfiability for sub-Boolean fragments of \(\mathcal{ALC}\). In: Proc. of DL 2010. (2010)Google Scholar
  26. 26.
    Meier, A., Schneider, T.: Generalized satisfiability for the description logic \(\mathcal{ALC}\). CoRR (2011),
  27. 27.
    Nebel, B.: Terminological reasoning is inherently intractable. AI 43(2), 235–249 (1990)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  29. 29.
    Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies 5, 1–122 (1941)MathSciNetGoogle Scholar
  30. 30.
    Pratt, V.R.: A practical decision method for propositional dynamic logic: Preliminary report. In: STOC, pp. 326–337. ACM, New York (1978)Google Scholar
  31. 31.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–226. ACM Press, New York (1978)Google Scholar
  32. 32.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. AI 48(1), 1–26 (1991)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Schnoor, H.: Algebraic Techniques for Satisfiability Problems. PhD thesis, Leibniz University of Hannover (2007)Google Scholar
  34. 34.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. JCSS 32(2), 183–221 (1986)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arne Meier
    • 1
  • Thomas Schneider
    • 2
  1. 1.Leibniz Universität HannoverGermany
  2. 2.University of BremenGermany

Personalised recommendations