Deterministic Algorithms for Multi-criteria TSP

  • Bodo Manthey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6648)


We present deterministic approximation algorithms for the multi-criteria traveling salesman problem (TSP). Our algorithms are faster and simpler than the existing randomized algorithms.

First, we devise algorithms for the symmetric and asymmetric multi-criteria Max-TSP that achieve ratios of 1/2k − ε and 1/(4k − 2) − ε, respectively, where k is the number of objective functions. For two objective functions, we obtain ratios of 3/8 − ε and 1/4 − ε for the symmetric and asymmetric TSP, respectively. Our algorithms are self-contained and do not use existing approximation schemes as black boxes.

Second, we adapt the generic cycle cover algorithm for Min-TSP. It achieves ratios of 3/2 + ε, \(\frac 12 + \frac{\gamma^3}{1-3\gamma^2} + \varepsilon\), and \(\frac 12 + \frac{\gamma^2}{1-\gamma} + \varepsilon\) for multi-criteria Min-ATSP with distances 1 and 2, Min-ATSP with γ-triangle inequality and Min-STSP with γ-triangle inequality, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem. Theoretical Computer Science 310(1-3), 135–146 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Gourvès, L., Monnot, J. (Non)-Approximability for the Multi-criteria TSP(1,2). In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 329–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Arvind, V., Mukhopadhyay, P.: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(logn/loglogn)-approximation algorithm for the asymmetric traveling salesman problem. In: Proc. 21st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 379–389. SIAM, Philadelphia (2010)CrossRefGoogle Scholar
  5. 5.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 641–648. SIAM, Philadelphia (2006)Google Scholar
  7. 7.
    Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Bläser, M., Manthey, B.: Approximating maximum weight cycle covers in directed graphs with weights zero and one. Algorithmica 42(2), 121–139 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality. Journal of Discrete Algorithms 4(4), 623–632 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Information Processing Letters 75(3), 133–138 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sunil Chandran, L., Shankar Ram, L.: On the relationship between ATSP and the cycle cover problem. Theoretical Computer Science 370(1-3), 218–228 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  13. 13.
    Feige, U., Singh, M.: Improved Approximation Ratios for Traveling Salesperson Tours and Paths in Directed Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 104–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Glaßer, C., Reitwießner, C., Witek, M.: Balanced combinations of solutions in multi-objective optimization, arXiv:1007.5475v1 [cs.DS] (2010)Google Scholar
  15. 15.
    Glaßer, C., Reitwießner, C., Witek, M.: Improved and derandomized approximations for two-criteria metric traveling salesman. Report 09-076, Rev. 1, Electron. Colloq. on Computational Complexity (ECCC) (2010)Google Scholar
  16. 16.
    Grandoni, F., Ravi, R., Singh, M.: Iterative Rounding for Multi-Objective Optimization Problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 95–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.I.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52(4), 602–626 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Manthey, B.: On approximating multi-criteria TSP. In: Proc. 26th Int. Symp. on Theoretical Aspects of Computer Science (STACS), pp. 637–648 (2009)Google Scholar
  19. 19.
    Manthey, B.: Multi-criteria TSP: Min and max combined. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 205–216. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Manthey, B., Shankar Ram, L.: Approximation algorithms for multi-criteria traveling salesman problems. Algorithmica 53(1), 69–88 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Paluch, K., Mucha, M., Mądry, A.: A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree problems. Journal of the ACM 29(2), 285–309 (1982)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proc. 41st Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 86–92. IEEE, Los Alamitos (2000)CrossRefGoogle Scholar
  25. 25.
    Zhang, T., Li, W., Li, J.: An improved approximation algorithm for the ATSP with parameterized triangle inequality. Journal of Algorithms 64(2-3), 74–78 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bodo Manthey
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations