\(\it \Pi^0_1\) Sets and Tilings

  • Emmanuel Jeandel
  • Pascal Vanier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6648)


In this paper, we prove that given any \(\it \Pi^0_1\) subset P of {0,1} there is a tileset τ with a countable set of configurations C such that P is recursively homeomorphic to C ∖ U where U is a computable set of configurations. As a consequence, if P is countable, this tileset has the exact same set of Turing degrees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: 25th International Symposium on Theoretical Aspects of Computer Science (STACS) (2008)Google Scholar
  2. 2.
    Berger, R.: The Undecidability of the Domino Problem. PhD thesis, Harvard University (1964)Google Scholar
  3. 3.
    Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society, vol. 66. The American Mathematical Society, Providence (1966)zbMATHGoogle Scholar
  4. 4.
    Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Mathematical Logic Quarterly 54(5), 460–469 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cenzer, D., Dashti, A., Toska, F., Wyman, S.: Computability of Countable Subshifts. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 88–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cenzer, D., Remmel, J.B.: \(\Pi_1^0\) classes in mathematics. In: Handbook of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combinatorics, ch. 13. Studies in Logic and the Foundations of Mathematics, vol. 139, pp. 623–821. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  7. 7.
    Cenzer, D., Remmel, J.: Effectively Closed Sets. ASL Lecture Notes in Logic (2011) (in preparation)Google Scholar
  8. 8.
    Dashti, A.: Effective Symbolic Dynamics. PhD thesis, University of Florida (2008)Google Scholar
  9. 9.
    Durand, B., Levin, L.A., Shen, A.: Complex tilings. Journal of Symbolic Logic 73(2), 593–613 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hanf, W.: Non Recursive Tilings of the Plane I. Journal of Symbolic Logic 39(2), 283–285 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)zbMATHGoogle Scholar
  12. 12.
    Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Myers, D.: Non Recursive Tilings of the Plane II. Journal of Symbolic Logic 39(2), 286–294 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Robinson, R.M.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Math. 12 (1971)Google Scholar
  15. 15.
    Simpson, S.: Mass Problems Associated with Effectively Closed Sets (in preparation)Google Scholar
  16. 16.
    Simpson, S.G.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (2011)Google Scholar
  17. 17.
    Wang, H.: Proving theorems by Pattern Recognition II. Bell Systems Technical Journal 40, 1–41 (1961)CrossRefGoogle Scholar
  18. 18.
    Wang, H.: Dominoes and the ∀ ∃ ∀ case of the decision problem. Mathematical Theory of Automata, 23–55 (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emmanuel Jeandel
    • 1
  • Pascal Vanier
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de MarseilleFrance

Personalised recommendations