Group-Theoretic Lower Bounds for the Complexity of Matrix Multiplication

  • Alexey Pospelov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6648)

Abstract

The complexity of multiplication in group algebras is closely related to the complexity of matrix multiplication. Inspired by the recent group-theoretic approach by Cohn and Umans [10] and the algorithms by Cohn et al. [9] for matrix multiplication, we present conditional group-theoretic lower bounds for the complexity of matrix multiplication. These bounds depend on the complexity of multiplication in group algebras.

Using Bläser’s lower bounds for the rank of associative algebras we characterize all semisimple group algebras of minimal bilinear complexity and show improved lower bounds for other group algebras. We also improve the best previously known bound for the bilinear complexity of group algebras by Atkinson. Our bounds depend on the complexity of matrix multiplication. In the special if the exponent of the matrix multiplication equals two, we achieve almost linear bounds.

Keywords

Bilinear complexity group algebras complexity of matrix multiplication lower bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alder, A., Strassen, V.: On the algorithmic complexity of associative algebras. Theoret. Comput. Sci. 15, 201–211 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atkinson, M.D.: The complexity of group algebra computations. Theoret. Comput. Sci. 5(2), 205–209 (1977)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bläser, M.: Lower bounds for the bilinear complexity of associative algebras. Comput. Complexity 9(2), 73–112 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Complexity 19(1), 43–60 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bläser, M.: A complete characterization of the algebras of minimal bilinear complexity. SIAM J. Comput. 34(2), 277–298 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Büchi, W.: Über eine Klasse von Algebren minimalen Ranges. PhD thesis, Zürich University (1984)Google Scholar
  7. 7.
    Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. A Series of Comprehensive Studies in Mathematics, vol. 315. Springer, Heidelberg (1997)MATHGoogle Scholar
  8. 8.
    Chudnovsky, D.V., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complexity 4(4), 285–316 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cohn, H., Kleinberg, R.D., Szegedy, B., Umans, C.: Group-theoretic algorithms for matrix multiplication. In: 46th FOCS, pp. 379–388. IEEE Comp. Soc., Los Alamitos (2005)Google Scholar
  10. 10.
    Cohn, H., Umans, C.: A group-theoretic approach to fast matrix multiplication. In: 44th FOCS, pp. 438–449. IEEE Comp. Soc., Los Alamitos (2003)Google Scholar
  11. 11.
    Gelfand, S.I.: Representations of the full linear group over a finite field. Math. USSR, Sb. 12, 1339 (1970)Google Scholar
  12. 12.
    Lang, S.: Algebra, 3rd revised edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  13. 13.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (2008)MATHGoogle Scholar
  14. 14.
    Lupanov, O.B.: A method of circuit synthesis. Izvesitya VUZ, Radiofizika 1, 120–140 (1958)Google Scholar
  15. 15.
    Shparlinski, I.E., Tsfasman, M.A., Vladut, S.G.: Curves with many points and multiplication in finite fields. In: Stichtenoth, H., Tsfasman, M.A. (eds.) International Workshop on Coding Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol. 1518, pp. 145–169. Springer, Berlin (1992)CrossRefGoogle Scholar
  16. 16.
    Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264, 182–202 (1973)MathSciNetMATHGoogle Scholar
  17. 17.
    van der Waerden, B.L.: Algebra II, 5th edn. Springer, Heidelberg (1967)CrossRefGoogle Scholar
  18. 18.
    Wientraub, S.H.: Representation Theory of Finite Groups: Algebra and Arithmetic. Graduate Series in Mathematics, vol. 59. AMS, Providence (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexey Pospelov
    • 1
  1. 1.Computer Science DepartmentSaarland UniversitySaarbrückenGermany

Personalised recommendations