Optimal Allocation in Combinatorial Auctions with Quadratic Utility Functions

  • Akiyoshi Shioura
  • Shunya Suzuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6648)


We discuss the optimal allocation problem in combinatorial auction, where the items are allocated to bidders so that the sum of the bidders’ utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of quadratic utility functions has a succinct representation but is sufficiently general. The main aim of this paper is to show the computational complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time exact/approximation algorithm. These results are given by using the relationship with graph cut problems such as the min/max cut problem and the multiway cut problem.


Utility Function Approximation Ratio Optimal Allocation Combinatorial Auction Submodular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Blumrosen, L., Nisan, N.: Algorithmic Game Theory. In: Nisan, N., et al. (eds.) Combinatorial Auction, ch. 11, Cambridge Univ. Press, Cambridge (2007)Google Scholar
  3. 3.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)MATHGoogle Scholar
  4. 4.
    Cheriyan, J., Hagerup, T., Mehlhorn, K.: An o(n)-time maximum-flow algorithm. SIAM J. Comput. 25, 1144–1170 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource allocation in k-additive domains: preference representation and complexity. Annals Oper. Res. 163, 49–62 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Conitzer, V., Sandholm, T., Santi, P.: Combinatorial auctions with k-wise dependent valuations. In: Proc. AAAI 2005, pp. 248–254 (2005)Google Scholar
  7. 7.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fujishige, S.: Submodular Function and Optimization, 2nd edn. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  10. 10.
    Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 463–469 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87, 95–124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hammer, P.L.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13, 388–399 (1965)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hirai, H., Murota, K.: M-convex functions and tree metrics. Japan J. Indust. Appl. Math. 21, 391–403 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Holzman, R., Kfir-Dahav, N., Monderer, D., Tennenholtz, M.: Bundling equilibrium in combinatorial auctions. Games Econom. Behav. 47, 104–123 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kelso, A.S., Crawford, V.P.: Job matching, coalition formation and gross substitutes. Econometrica 50, 1483–1504 (1982)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for max-cut and other 2-variable CSPs? In: Proc. FOCS, pp. 146–154 (2004)Google Scholar
  18. 18.
    Khot, S., Lipton, R.J., Markakis, E., Mehta, A.: Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52, 3–18 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J. ACM 49, 616–639 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kolmogorov, V.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)CrossRefGoogle Scholar
  21. 21.
    Langberg, M., Rabani, Y., Swamy, C.: Approximation algorithms for graph homomorphism problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 176–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econom. Behav. 55, 270–296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. In: Proc. EC 1999, pp. 96–102 (1999)Google Scholar
  24. 24.
    Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proc. EC 2008, pp. 70–77 (2008)Google Scholar
  26. 26.
    Reijniese, H., van Gellekom, A., Potters, J.A.M.: Verifying gross substitutability. Econom. Theory 20, 767–776 (2002)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence 135, 1–54 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proc. STOC 2008, pp. 67–74 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Akiyoshi Shioura
    • 1
  • Shunya Suzuki
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations