Advertisement

Tiled Top-Down Pyramids and Segmentation of Large Histological Images

  • Romain Goffe
  • Luc Brun
  • Guillaume Damiand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6658)

Abstract

Recent microscopic imaging systems such as whole slide scanners provide very large (up to 18GB) high resolution images. Such amounts of memory raise major issues that prevent usual image representation models from being used. Moreover, using such high resolution images, global image features, such as tissues, do not clearly appear at full resolution. Such images contain thus different hierarchical information at different resolutions. This paper presents the model of tiled top-down pyramids which provides a framework to handle such images. This model encodes a hierarchy of partitions of large images defined at different resolutions. We also propose a generic construction scheme of such pyramids whose validity is evaluated on an histological image application.

Keywords

Irregular pyramid Topological model Combinatorial map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation algorithms. Pattern Recognition Letters 11(9), 605–617 (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brun, L., Mokhtari, M., Domenger, J.P.: Incremental modifications on segmented image defined by discrete maps. Journal of Visual Communication and Image Representation 14, 251–290 (2003)CrossRefGoogle Scholar
  3. 3.
    Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93(2), 111–154 (2004)CrossRefGoogle Scholar
  4. 4.
    Goffe, R., Brun, L., Damiand, G.: Tiled top-down combinatorial pyramids for large images representation. International Journal of Imaging Systems and Technology 21(1), 28–36 (2011)CrossRefGoogle Scholar
  5. 5.
    Goffe, R., Damiand, G., Brun, L.: A causal extraction scheme in top-down pyramids for large images segmentation. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 264–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(3), 289–317 (2006)CrossRefGoogle Scholar
  7. 7.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. on PAMI 24(7), 881–892 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 46(2), 141–161 (1989)CrossRefGoogle Scholar
  9. 9.
    Roullier, V., Lézoray, O., Ta, V.-T., Elmoataz, A.: Mitosis extraction in breast-cancer histopathological whole slide images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 539–548. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Romain Goffe
    • 1
  • Luc Brun
    • 1
  • Guillaume Damiand
    • 2
  1. 1.GREYC, ENSICAEN, CNRS, UMR6072CaenFrance
  2. 2.LIRIS, Université de Lyon, CNRS, UMR5205VilleurbanneFrance

Personalised recommendations