Advertisement

Biology of Prokaryotic Probiotics

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 21)

Abstract

Bacteria and archaea are two distinct phyla of the prokaryotic kingdom containing many different species of microorganisms. Prokaryotic probiotics are single-celled nonnucleated organisms which when consumed live in adequate numbers confer a health benefit to the host. They can be classified based on morphology, ability to form spores, method of energy production, nutritional requirements, and reaction to the Gram stain. Currently, there are no known probiotic archaea but they have an important potential in the synthesis of prebiotics and other bioproducts due to their unique characteristics. There are however, probiotic bacteria mainly coming from the genera of Lactobacillus and bifidobacteria. Lactobacillus has 106 validly described species, out of which 56 species have probiotic potential. On the other hand, Bifidobacteria currently has 30 species validly described, with 8 having probiotic capabilities. A close study of these microorganisms reveal that probiotic bacteria are likely to be Gram positive, mostly rod shaped but with fewer spherically shaped ones, nonspore forming and nonflagellated bacteria.

Keywords

Lactic Acid Bacterium Asexual Reproduction Probiotic Bacterium Passive Process Prokaryotic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akiyama K, Takase M, Horikoshi K, Okonogi S (2001) Production of galactooligosaccharides from lactose using β-glucosidase from Thermus sp. Z-1. Biosci Biotechnol Biochem 65:438–441PubMedCrossRefGoogle Scholar
  2. Baross JA, Holden JF (1996) Enzymes and proteins from hyperthermophilic microorganisms. Adv Protein Chem 48:1–34PubMedCrossRefGoogle Scholar
  3. Biavati B, Mattarelli P (2001) The family Bifidobacteriaceae. In: The prokaryotes, Release 3.7Google Scholar
  4. Browning DF, Grainger DC, Busby SJW (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6):773–780PubMedCrossRefGoogle Scholar
  5. Bruins ME, Strubel M, Lieshout JFT, Janssen AEM, Boom RM (2003) Oligosaccharide synthesis by the hyperthermostable beta-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microb Technol 33:3–11CrossRefGoogle Scholar
  6. Campbell N (2003) Biology: concepts and connections. Pearson Education, San FranciscoGoogle Scholar
  7. Chaban B, Ng SY, Jarrell KF (2006) Archaeal habitats from the extreme to the ordinary. Can J Microbiol 52:73–116PubMedCrossRefGoogle Scholar
  8. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208PubMedCrossRefGoogle Scholar
  9. Chenoll E, Carmen MM, Aznar R (2006) Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage. Syst Appl Microbiol 29:389–395PubMedCrossRefGoogle Scholar
  10. Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433PubMedGoogle Scholar
  11. Demchick PH, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178 (3): 768–73. PMID 8550511. PMC 177723. http://jb.asm.org/cgi/reprint/178/3/768. Accessed 10 Dec 2010
  12. Ehrmann MA, Brandt M, Stolz P, Vogel RF, Korakli M (2007) Lactobacillus secaliphilus sp. nov., isolated from type II sourdough fermentation. Int J Syst Evol Microbiol 57:745–750PubMedCrossRefGoogle Scholar
  13. Endo A, Okada S (2007a) Lactobacillus farraginis sp. nov. and Lactobacillus parafarraginis sp. nov., heterofermentative lactobacilli isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 57:708–712PubMedCrossRefGoogle Scholar
  14. Endo A, Okada S (2007b) Lactobacillus composti sp. nov., a lactic acid bacterium isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 57:870–872PubMedCrossRefGoogle Scholar
  15. Faruque SM, Nair GB (ed) (2008). Vibrio cholerae: genomics and molecular biology. Caister Academic Press. ISBN 978-1-904455-33-2. http://www.horizonpress.com/vib. Accessed 10 Dec 2010
  16. Fox A (2010) Culture and identification of infectious agents. http://pathmicro.med.sc.edu/fox/culture. Accessed 13 Dec 2010
  17. Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658PubMedCrossRefGoogle Scholar
  18. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328PubMedCrossRefGoogle Scholar
  19. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology, 2nd edn, Release 5.0, Springer, New York. DOI: http://dx.doi.org/10.1007/bergeysoutline200405. Accessed 10 Dec 2010
  20. Goodsell DS (2004). “Catalase”. Molecule of the Month. RCSB Protein Data Bank. http://www.rcsb.org/pdb/static.do?p=education_discussion/molecule of the month/pdb571.html. Accessed 10 Dec 2010
  21. Hansson T, Kaper T, van der Oost J, de Vos WM, Adlercreutz P (2001) Improved oligosaccharide synthesis by protein engineering of β-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnol Bioengr 73:203–210CrossRefGoogle Scholar
  22. Harry E, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precision. Int Rev Cytol 253:27–94PubMedCrossRefGoogle Scholar
  23. Kaiser GE (1999) Arrangements of Cocci. Dr. Kaiser’s Microbiology Homepage. http://student.ccbcmd.edu/~gkaiser/goshp.html. Accessed 01 Dec 2010
  24. Kandler O, Lauer E (1974) Neuere Vorstellungenzur Taxonomic der Bifidobacterien. Zentralbl. Bakteriol.Parasitenkd. Infektionskr. Hyg Abt 1 Orig Reihe A228: 29–45Google Scholar
  25. Kerfeld CA, Sawaya M, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates T (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309(5736):936–938PubMedCrossRefGoogle Scholar
  26. Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311(5758):242–245PubMedCrossRefGoogle Scholar
  27. Li Y, Raftis E, Canchaya C, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. Salicinius do not merit separate subspecies status. Int J Syst Evol Microbiol 56:2397–2403PubMedCrossRefGoogle Scholar
  28. Madigan M, Martinko J (eds) (2005) Brock biology of microorganisms, 11th edn. New York, Prentice Hall, ISBN 0-13-144329-1Google Scholar
  29. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5):325–438PubMedCrossRefGoogle Scholar
  30. Narra HP, Ochman H (2006) Of what use is sex to bacteria. Curr Biol 16(17):R705–R710PubMedCrossRefGoogle Scholar
  31. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693PubMedCrossRefGoogle Scholar
  32. Otieno DO (2010) Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr Rev Food Sci F 9:471–482CrossRefGoogle Scholar
  33. Pace NR (2006) Time for a change. Nature 441(7091):289. doi: 10.1038/441289a DOI:dx.doi.org. PMID 16710401 PubMedCrossRefGoogle Scholar
  34. Petzelbauer I, Reiter A, Splechtna B, Kosma P, Nidetzky B (2000) Transgalactosylation by thermostable β-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Binding interactions of nucleophiles with the galactosylated enzyme intermediate makes major contributions to the formation of new & beta-glycosides during lactose conversion. Eur J Biochem 267:5055–5066PubMedCrossRefGoogle Scholar
  35. Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136PubMedCrossRefGoogle Scholar
  36. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (October 2001). “Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria”. Food and Agriculture Organization of the United Nations, World Health Organization. http://www.who.int/entity/foodsafety/publications/fs_management/en/probiotics.pdf. Accessed 01 Dec 2010
  37. Reuter S, Rusborg NA, Zimmermann W (1999) β-Galactooligosaccharide synthesis with β-galactosidases from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli. Enzyme Microb Technol 25:509–516CrossRefGoogle Scholar
  38. Rosselló-Mora R (2005) Updating prokaryotic taxonomy. J Bacteriol 187:6255–6257PubMedCrossRefGoogle Scholar
  39. Ryan KJ, Ray CG (eds) (2004) Sherris medical microbiology (4th edn). McGraw Hill, New York, ISBN 0-8385-8529-9Google Scholar
  40. Salton MRJ, Kim KS (1996) Structure. In: Barron S et al. (eds) Baron’s Medical Microbiology, 4th edn. University of Texas Medical Branch. ISBN 0-9631172-1-1. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mmed.section.289#297. Accessed 25 Nov 2010
  41. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440(7080):110–114PubMedCrossRefGoogle Scholar
  42. Schleifer KH, Ludwig W (1994) Molecular taxonomy: classification and identification. In: Priest FG et al (eds) Bacterial diversity and systematics. Plenum, New YorkGoogle Scholar
  43. Schwan T (1996) Ticks and Borrelia: model systems for investigating pathogen-arthropod interactions. Infect Agents Dis 5(3):167–181PubMedGoogle Scholar
  44. Staley JT, Krieg NR (1989) Classification of prokaryotic organisms: an overview. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1601–1603Google Scholar
  45. Thanbichler M, Viollier PH, Shapiro L (2005) The structure and function of the bacterial chromosome. Curr Opin Genet Dev 15:153–162Google Scholar
  46. van Zon A, Mossink MH, Scheper RJ, Sonneveld P, Wiemer EA (2003) The vault complex. Cell Mol Life Sci 60(9):1828–1837PubMedCrossRefGoogle Scholar
  47. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedGoogle Scholar
  48. Ventura M, van Sinderen D, Fitzgerald GF, Zink R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86:205–223PubMedCrossRefGoogle Scholar
  49. Weiss DS (2004) Bacterial cell division and the septal ring. Mol Microbiol 54(3):588–597Google Scholar
  50. Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95(12):6854–6859PubMedCrossRefGoogle Scholar
  51. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579PubMedCrossRefGoogle Scholar
  52. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Center for Bioenergy and Bioproduct – BSELWashington State University, Washington State University TriCitiesRichlandUSA

Personalised recommendations