Challenges in Answer Set Solving

  • Martin Gebser
  • Roland Kaminski
  • Benjamin Kaufmann
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6565)


Michael Gelfond’s application of Answer Set Programming (ASP) in the context of NASA’s space shuttle has opened the door of the ivory tower. His project has not only given our community self-confidence and served us as a reference for grant agencies and neighboring fields, but ultimately it helped freeing the penguins making them exclaim “Yes, we can [fly]!”. The community has taken up this wonderful assist to establish ASP as a prime tool for declarative problem solving in the area of Knowledge Representation and Reasoning. Despite this success, however, ASP has not yet attracted broad attention outside this area. This paper aims at identifying some current challenges that our field has to overcome in the mid-run to ultimately become a full-fledged technology in Informatics.


Logic Program Logic Programming Benchmark Instance Cardinality Constraint Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62–72 (2005)Google Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7(2), 261–268 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision support system for the space shuttle. In: Ramakrishnan, I. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic music by answer set programming. In: [39], pp. 160–174Google Scholar
  7. 7.
    Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear programming for automatic synthesis of multiprocessor systems from real-time parallel programs. Journal of Reconfigurable Computing (2009)Google Scholar
  8. 8.
    Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. In: [40], pp. 436–441Google Scholar
  9. 9.
    Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theory and Practice of Logic Programming 11(2), 1–38 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  16. 16.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann Publishers, San Francisco (2004)zbMATHGoogle Scholar
  17. 17.
    Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53(1-4), 251–287 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: [41], pp. 235–249Google Scholar
  19. 19.
    Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. In: Theory and Practice of Logic Programming. Twenty-sixth International Conference on Logic Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp. 465–480. Cambridge University Press, Cambridge (2010)Google Scholar
  20. 20.
    Cliffe, O., de Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation and animation using answer set programming. In: [39], pp. 724–728Google Scholar
  21. 21.
    de Vos, M., Schaub, T. (eds.): Proceedings of the Workshop on Software Engineering for Answer Set Programming (SEA 2007). Number CSBU-2007-05 in Department of Computer Science, University of Bath, Technical Report Series (2007) ISSN 1740-9497Google Scholar
  22. 22.
    de Vos, M., Schaub, T. (eds.): Proceedings of the Second Workshop on Software Engineering for Answer Set Programming (SEA 2009). Department of Computer Science, University of Bath, Technical Report Series (2009)Google Scholar
  23. 23.
    Brain, M., de Vos, M.: Debugging logic programs under the answer set semantics. In: de Vos, M., Provetti, A. (eds.) Proceedings of the Third International Workshop on Answer Set Programming (ASP 2005). CEUR Workshop Proceedings (, vol. 142, pp. 141–152 (2005)Google Scholar
  24. 24.
    Pontelli, E., Son, T.C.: Justifications for logic programs under answer set semantics. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 196–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging answer-set programs. In: [40], pp. 448–453Google Scholar
  27. 27.
    Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using database optimization techniques for nonmonotonic reasoning. In: Proceedings of the Seventh International Workshop on Deductive Databases and Logic Programming (DDLP 1999), pp. 135–139 (1999)Google Scholar
  28. 28.
    Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press, Rockville (1988)Google Scholar
  29. 29.
  30. 30.
    Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing: Game description language specification. Technical Report LG-2006-01, Stanford University (March 2008)Google Scholar
  32. 32.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight constraint rules in conflict-driven ASP solvers. In: [41], pp. 250–264Google Scholar
  34. 34.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Bridge, D., Brown, K., O’Sullivan, B., Sorensen, H. (eds.) Proceedings of the Nineteenth Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2008 (2008)Google Scholar
  37. 37.
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)zbMATHGoogle Scholar
  38. 38.
    Ginsberg, M. (ed.): Readings in Nonmonotonic Reasoning. Morgan Kaufmann, San Francisco (1987)Google Scholar
  39. 39.
    Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  40. 40.
    Fox, D., Gomes, C. (eds.): Proceedings of the Twenty-third National Conference on Artificial Intelligence (AAAI 2008). AAAI Press, Menlo Park (2008)Google Scholar
  41. 41.
    Hill, P.M., Warren, D.S. (eds.): ICLP 2009. LNCS, vol. 5649. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Gebser
    • 1
  • Roland Kaminski
    • 1
  • Benjamin Kaufmann
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institut für InformatikUniversität PotsdamPotsdamGermany

Personalised recommendations