Photography and Computer Animation for Scientific Visualization: Lessons Learned

  • Francisco V. Cipolla Ficarra
  • Lucy Richardson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6616)

Abstract

In the current work are discussed a series of communicability techniques to increase scientific visualization in the case of orthodontics, in an off-line interactive system. This interactive system can be defined as a kind of guideline that has survived the passing of time. Additionally, the design categories are described that have allowed to draw up a high quality system with scarce financial resources, since the software and the hardware currently used can be regarded as of domestic use. It is also made apparent how a simple information structure, joined to the dynamic and static means, can facilitate the diffusion of science among the inexperienced users. Finally, a brief state of the art is made of scientific visualization.

Keywords

Scientific Visualization Computer Animation Photography Design Communicability Multimedia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dougherty, M., et al.: Unifying Biological Image Formats with HDF5. Communications of the ACM 52(10), 42–47 (2009)CrossRefGoogle Scholar
  2. 2.
    Rubin, D., et al.: Annotation and Image Markup: Accessing and Interoperating with the Semantic Content in Medical Imaging. IEEE Intelligent Systems 24(1), 57–65 (2009)CrossRefGoogle Scholar
  3. 3.
    Weitzel, M., et al.: A Web 2.0 Model for Patient-Centered Health Informatics Applications. IEEE Computer 43(7), 43–50 (2010)CrossRefGoogle Scholar
  4. 4.
    Saltz, J., et al.: e-Science, caGrid, and Transalational Biomedical Research. IEEE Computer 41(11), 58–66 (2008)CrossRefGoogle Scholar
  5. 5.
    Kari, L., Rozenberg, G.: The Many Facets of Natural Computing. Communications of ACM, 72–83 (2008)Google Scholar
  6. 6.
    Wilson, K.: Grand Challenges to Computational Science. Future Generation Computer Systems 5(2-3), 171–189 (1989)CrossRefGoogle Scholar
  7. 7.
    Focardi, S.: La simulazione della realtà. Editrice il Rostro, Milano (2007)Google Scholar
  8. 8.
    Cipolla-Ficarra, F.: Quality and Communicability for Interactive Hypermedia Systems: Concepts and Practices for Design. IGI Global, Hershey (2010)CrossRefGoogle Scholar
  9. 9.
    Scharver, C., et al.: Designing Cranial Implants in a Haptic Augmented Reality Environment. Communications of the ACM 47(8), 32–39 (2004)CrossRefGoogle Scholar
  10. 10.
    Hunter, P., et al.: Multiscale Modeling: Physiome Project Standards, Tools, and Databases. IEEE Computer 39(11), 48–53 (2006)CrossRefGoogle Scholar
  11. 11.
    Ackroyd, K., et al.: Scientific Software Development at a Research Facility. IEEE Software 25(4), 44–51 (2008)CrossRefGoogle Scholar
  12. 12.
    Barrow, J.: Le immagini della scienza, Mondadori, Milano (2009)Google Scholar
  13. 13.
    Minnery, B., Fine, M.: Neuroscience and the Future of Human-Computer Interaction. Interactions 16(2), 70–75 (2009)CrossRefGoogle Scholar
  14. 14.
    Digital Illusion CD-ROM: Técnica de Anclaje Diverso en Ortodoncia, Matrust, Barcelona (1995) Google Scholar
  15. 15.
    Eco, U.: Apocalittici e integrati, Bompiani, Milano (2001) Google Scholar
  16. 16.
    Apple: Macintosh Human Interface Guidelines. Addison-Wesley, Massachusetts (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco V. Cipolla Ficarra
    • 1
    • 2
  • Lucy Richardson
    • 3
  1. 1.HCI Lab. – F&F Multimedia Communic@tions Corp.ALAIPO: Asociación Latina de Interacción Persona-OrdenadorBergamoItaly
  2. 2.HCI Lab. – F&F Multimedia Communic@tions Corp.AINCI: Asociación Internacional de la Comunicación InteractivaBergamoItaly
  3. 3.Electronic ArtsVancouverCanada

Personalised recommendations