# A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solving Linear Programs and Games

• Oliver Friedmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6655)

## Abstract

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Zadeh’s pivoting rule [25].

Also known as the Least-Entered, rule, Zadeh’s pivoting method belongs to the family of memorizing improvement rules, which among all improving pivoting steps from the current basic feasible solution (or vertex) chooses one which has been entered least often. We provide the first subexponential (i.e., of the form $$2^{\Omega(\sqrt{n})}$$) lower bound for this rule.

Our lower bound is obtained by utilizing connections between pivoting steps performed by simplex-based algorithms and improving switches performed by policy iteration algorithms for 1-player and 2-player games. We start by building 2-player parity games (PGs) on which the policy iteration with the Least-Entered, rule performs a subexponential number of iterations. We then transform the parity games into 1-player Markov Decision Processes (MDPs) which corresponds almost immediately to concrete linear programs.

## References

1. 1.
Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. In: Polyhedral Combinatorics, Mathematical Programming Studies, vol. 8, pp. 24–34. Springer, Heidelberg (1978), http://dx.doi.org/10.1007/BFb0121192
2. 2.
Bertsekas, D.: Dynamic programming and optimal control, 2nd edn. Athena Scientific, Singapore (2001)
3. 3.
Bhat, G.S., Savage, C.D.: Balanced gray codes. Electronic Journal of Combinatorics 3, 2–5 (1996)
4. 4.
Broder, A., Dyer, M., Frieze, A., Raghavan, P., Upfal, E.: The worst-case running time of the random simplex algorithm is exponential in the height. Inf. Process. Lett. 56(2), 79–81 (1995)
5. 5.
Dantzig, G.: Linear programming and extensions. Princeton University Press, Princeton (1963)
6. 6.
Derman, C.: Finite state Markov decision processes. Academic Press, London (1972)
7. 7.
Fathi, Y., Tovey, C.: Affirmative action algorithms. Math. Program. 34(3), 292–301 (1986)
8. 8.
Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)
9. 9.
Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: Proc. of 24th LICS, pp. 145–156 (2009)Google Scholar
10. 10.
Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Selected Papers of the Conference “Logic in Computer Science 2009” (to appear) (2010), a preprint available from http://www.tcs.ifi.lmu.de/~friedman
11. 11.
Friedmann, O., Hansen, T., Zwick, U.: A subexponential lower bound for the random facet algorithm for parity games. In: Proc. of 22nd SODA (2011) (to appear)Google Scholar
12. 12.
Friedmann, O., Hansen, T., Zwick, U.: Subexponential lower bounds for randomized pivoting rules for solving linear programs (2011), a preprint available from http://www.tcs.ifi.lmu.de/~friedman
13. 13.
Gärtner, B., Henk, M., Ziegler, G.: Randomized simplex algorithms on Klee-Minty cubes. Combinatorica 18(3), 349–372 (1998), http://dx.doi.org/10.1007/PL00009827
14. 14.
Gärtner, B., Tschirschnitz, F., Welzl, E., Solymosi, J., Valtr, P.: One line and n points. Random Structures & Algorithms 23(4), 453–471 (2003), http://dx.doi.org/10.1002/rsa.10099
15. 15.
Goldfarb, D., Sit, W.: Worst case behavior of the steepest edge simplex method. Discrete Applied Mathematics 1(4), 277–285 (1979), http://www.sciencedirect.com/science/article/B6TYW-45GVXJ1-2B/2/a7035da2cf84d35e9503c69f883c23f7
16. 16.
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
17. 17.
Howard, R.: Dynamic programming and Markov processes. MIT Press, Cambridge (1960)
18. 18.
Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion improvement. Discrete Mathematics 4(4), 367–377 (1973), http://www.sciencedirect.com/science/article/B6V00-45FSNXP-1H/2/0968f0b25d2d8a2e0e160a8a248d06de
19. 19.
Kalai, G.: A subexponential randomized simplex algorithm (extended abstract). In: Proc. of 24th STOC. pp. 475–482 (1992)Google Scholar
20. 20.
Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Mathematical Programming 79, 217–233 (1997)
21. 21.
Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.) Inequalities III, pp. 159–175. Academic Press, New York (1972)Google Scholar
22. 22.
Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4-5), 498–516 (1996)
23. 23.
Puterman, M.: Markov decision processes. Wiley, Chichester (1994)
24. 24.
Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)
25. 25.
Zadeh, N.: What is the worst case behavior of the simplex algorithm? Tech. Rep. 27, Department of Operations Research, Stanford (1980)Google Scholar