Advertisement

The AD 365 Earthquake: Large Tsunamigenic Earthquakes in the Hellenic Trench

  • Beth Shaw
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Historical accounts describe an earthquake and tsunami on 21 July AD 365 that destroyed cities and drowned thousands of people in coastal regions from the Nile delta to modern-day Dubrovnik. The location and tectonic setting of this earthquake have been uncertain until now. In this chapter, I present evidence from radiocarbon data and field observations that western Crete was lifted above sea level, by up to 10 m, synchronously with the AD 365 earthquake. The distribution of uplift, combined with observations of present-day seismicity, suggest that this earthquake occurred not on the subduction interface beneath Crete, but on a fault dipping at about \(30^{\circ}\) within the overriding plate. Calculations of tsunami propagation, carried out by Piggott et al. show that the uplift of the sea floor associated with such an earthquake would have generated a damaging tsunami through much of the eastern Mediterranean.

Keywords

Subduction Zone Slip Rate Accelerator Mass Spectrometry Nile Delta Plate Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.N. Ambraseys, C.P. Melville, R.D. Adams, The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review (Cambridge University Press, Cambridge, 1995)Google Scholar
  2. 2.
    A. Elias, P. Tapponnier, S.C. Singh, G.C.P. King, A. Brias, M. Daeron, H. Carton, A. Sursock, E. Jacques, R. Jomaa, Y. Klinger, Active thrusting off Mount Lebanon: Source of the tsunamigenic AD 551 Beirut-Tripoli earthquake. Geology 35, 755–758 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Salamon, T. Rockwell, S.N. Ward, E. Guidoboni, A. Comastri, Tsunami hazard evaluation of the Eastern Mediterranean: Historical analysis and selected modeling. Bull. Seismolog. Soc. Am. 97, 705–724 (2007)CrossRefGoogle Scholar
  4. 4.
    T.A.B. Spratt, Travels and Researches in Crete, vol 2 (J. van Voorst, London, 1865)Google Scholar
  5. 5.
    P.A. Pirazzoli, J. Thommeret, Y. Thommeret, J. Laborel, L.F. Montaggioni, Crustal block movements from Holocene shorelines: Crete and Antikithera (Greece). Tectonophysics 86, 27–43 (1982)CrossRefGoogle Scholar
  6. 6.
    P.A. Pirazzoli, J. Ausseil-Badie, P. Giresse, E. Hadjidaki, M. Arnold, Historical environmental changes at Phalasarna harbor, West Crete. Geoarcheology 7, 371–392 (1992)CrossRefGoogle Scholar
  7. 7.
    P.A. Pirazzoli, J. Laborel, S.C. Stiros, Earthquake clustering in the Eastern Mediterranean during historical times. J. Geophys. Res. 101, 6083–6097 (1996)CrossRefGoogle Scholar
  8. 8.
    B.C. Papazachos, Large seismic faults in the Hellenic arc. Ann. Geophys. 39, 892–903 (1996)Google Scholar
  9. 9.
    P. England, P. Molnar, Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177 (1990)CrossRefGoogle Scholar
  10. 10.
    Y. Thommeret, J. Thommeret, J. Laborel, L.F. Montaggioni, P.A. Pirazzoli, Late Holocene shoreline changes and seismo-tectonic displacements in western Crete (Greece). Zeitschrift für Geomorphologie Suppl. 40, 127–149 (1981)Google Scholar
  11. 11.
    S. Price, T. Higham, L. Nixon, J. Moody, Relative sea-level changes: reassessment of radiocarbon dates from Sphakia and west Crete. Annu. British Sch. Athens 97, 171–200 (2002)Google Scholar
  12. 12.
    K.A. Hughen, M.G.L. Baillie, E. Bard, J.W. Beck, C.J. Bertrand, P.G. Blackwell, C.E. Buck, G.S. Burr, K.B. Cutler, P.E. Damon, R.L. Edwards, R.G. Fairbanks, M. Friedrich, T.P. Guilderson, B. Kromer, G. McCormac, S. Manning, C. Bronk Ramsey, P.J. Reimer, R.W. Reimer, S. Remmele, J.R. Southon, M. Stuiver, S. Talamo, F. Taylor, J.v.d. Plicht, C.E. Weyhenmeyer, Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1059–1086 (2004)Google Scholar
  13. 13.
    P.J. Reimer, F.G. McCormac, Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44, 159–166 (2002)Google Scholar
  14. 14.
    T. Taymaz, J. Jackson, R. Westaway, Earthquake mechanisms in the Hellenic Trench near Crete. Geophys. J. Int. 102, 695–731 (1990)CrossRefGoogle Scholar
  15. 15.
    J. Mascle, E. Chaumillon, An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data. Geo-Mar. Lett. 18, 81–89 (1998)CrossRefGoogle Scholar
  16. 16.
    B. Tichelaar, L. Ruff, Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2017–2038 (1993)CrossRefGoogle Scholar
  17. 17.
    Y. Okada, Internal deformation due to shear and tensile faults in an elastic half space. Bull. Seismolog. Soc. Am. 82, 1018–1040 (1992)Google Scholar
  18. 18.
    de J.B. Chabalier, H. Lyon-Caen, A. Zollo, A. Deschamps, P. Bernard, D. Hatzfeld, A detailed analysis of microearthquakes in western Crete from digital three-component seismograms. Geophys. J. Int. 110, 347–360 (1992)CrossRefGoogle Scholar
  19. 19.
    T. Meier, M. Rische, B. Endrun, A. Vafidis, H.P. Harjes, Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383, 149–169 (2004)CrossRefGoogle Scholar
  20. 20.
    P.A. Pirazzoli, The Early Byzantine Tectonic Paroxysm. Zeitschrift für Geomorphologie Suppl. 62, 31–49 (1986)Google Scholar
  21. 21.
    S. Stiros, A. Drakos, A fault model for the tsunami-associated, magnitude >8.5 Eastern Mediterranean, AD 365 earthquake. Zeitschrift für Geomorphologie 146, 125–137 (2006)Google Scholar
  22. 22.
    R. Wang, F. Lorenzo-Martin, F. Roth, PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput.Geosci. 32, 527–441 (2006)CrossRefGoogle Scholar
  23. 23.
    C.H. Scholz, C.A. Aviles, S.G. Wesnousky, Scaling differences between large interplate and intraplate earthquakes. Bull. Seismolog. Soc. Am. 76, 65–70 (1986)Google Scholar
  24. 24.
    C. Subarya, M. Chlieh, L. Prawirodirdjo, J.-P. Avouac, Y. Bock, K. Sieh, A.J. Meltzner, D.H. Natawidjaja, R. McCaffret, Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440, 46–51 (2006)Google Scholar
  25. 25.
    R. Bilham, P. England, Plateau pop-up in the great (1987) Assam earthquake. Nature 410, 806–809 (2001)CrossRefGoogle Scholar
  26. 26.
    R. Ford, C.C. Pain, M.D. Piggott, A.J.H. Goddard, de C.R.E. Oliveira, A.B. Umpleby, A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: model formulation. Monthly Weather Rev. 132, 2816–2831 (2004)CrossRefGoogle Scholar
  27. 27.
    G.J. Gorman, M.D. Piggott, C.C. Pain, de C.R.E. Oliveira, A.P. Umpleby, A.J.H. Goddard, Optical bathymetric representation through constrained unstructured mesh adaptivity. Ocean Model. 12, 436–452 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Gower, Jason 1 detects the 26 December 2004 tsunami, EOS transactions. AGU 86, 37–38 (2005)Google Scholar
  29. 29.
    J. Jackson, D. McKenzie, The relationship between plate motions and seismic moment tensors, and rates of active deformation in the Mediterranean and Middle East. Geophys. J. 93, 45–73 (1988)CrossRefGoogle Scholar
  30. 30.
    J.-O. Park, T. Tsuru, S. Kodaira, P.R. Cummins, Y. Kaneda, Splay fault branching along the Nankai subduction zone. Science 297, 1157–1160 (2002)Google Scholar
  31. 31.
    G.F. Moore, N.L. Bangs, A. Taira, S. Kuramoto, E. Pangborn, H.J. Tobin, Three-dimensional splay fault geometry and implications for tsunami generation.. Science 318, 1128–1131 (2007)CrossRefGoogle Scholar
  32. 32.
    G. Plafker, Tectonic deformation associated with the 1964 Alaska earthquake. Science 148, 1675–1687 (1965)CrossRefGoogle Scholar
  33. 33.
    G. Ichinose, P. Somerville, H.K. Thio, R. Graves, D. O’Connell, Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami and geodetic data. J. Geophys. Res. 112, B07306 (2007)CrossRefGoogle Scholar
  34. 34.
    X. Le Pichon, J. Angelier, The Aegean Sea. Philos. trans. R. Soc. Lond.. Ser. A. Math. Sci. 300, 357–372 (1981)Google Scholar
  35. 35.
    B. Endrun, T. Meier, M. Bischoff, H.-P. Harjes, Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophys. J. Int. 158, 592–608 (2004)Google Scholar
  36. 36.
    M. Siddall, E. Rohling, A. Almogi-Labin, C. Hemleben, D. Meischner, I. Schmelzer, D. Smeed, Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)CrossRefGoogle Scholar
  37. 37.
    E.J. Rohling, K. Grant, M. Bolshaw, A.P. Roberts, M. Siddall, C. Hemleben, M. Kucera, Antarctic temperature and global sea-level closely coupled over the past five glacial cycles. Nat. Geosci. 2, 500–504 (2009)CrossRefGoogle Scholar
  38. 38.
    A.Z. Hamouda, Numerical computations of 1303 tsunamigenic propagation towards Alexandria, Egyptian Coast. J. Afr. Earth Sci. 44, 37–44 (2006)CrossRefGoogle Scholar
  39. 39.
    H. Akima, A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Softw. 4, 148–159 (1978)CrossRefGoogle Scholar
  40. 40.
    S. McClusky, Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 105, 5695–5719 (2000)Google Scholar
  41. 41.
    S. McClusky, R. Reilinger, S. Mahmoud, D. Ben Sari, A. Tealeb, GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 155, 126–138 (2003)CrossRefGoogle Scholar
  42. 42.
    R. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, H. Ozener, F. Kadirov, I. Guliev, R. Stepanyan, M. Nadariya, G. Hahubia, S. Mahmoud, K. Sakr, A. Ar-Rajehi, D. Paradissis, A. Al-Aydrus, M. Prilepin, T. Guseva, E. Evren, A. Dmitrotsa, S.V. Filikov, F. Gomez, R. Al-Ghazzi, G. Karam, GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collisional zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411 (2006)CrossRefGoogle Scholar
  43. 43.
    E.R. Engdahl, R.D. Vander Hilst, R.P. Buland, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismolog. Soc. Am. 88, 722–743 (1998)Google Scholar
  44. 44.
    M.L. Jost, O. Knabenbauer, J. Cheng, H.-P. Harjes, Fault plane solutions of microearthquakes and small events in the Hellenic arc. Tectonophysics 356, 87–114 (2002)CrossRefGoogle Scholar
  45. 45.
    K.A. Hughen, J. Southon, S. Lehman, C. Bertrand, J. Turnbull, \(^{14}\hbox{C}\) calibration and activity for the past 50,000  years updated from the Cariaco Basin. Q. Sci. Rev. 25, 3216–3227 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.St. John’s CollegeUniversity of CambridgeCambridgeUK

Personalised recommendations