Impact of Queueing Delay Estimation Error on Equilibrium and Its Stability

  • Corentin Briat
  • Emre A. Yavuz
  • Gunnar Karlsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6641)

Abstract

Delay-based transmission control protocols need to separate round-trip time (RTT) measurements into their constituting parts: the propagation and the queueing delays. We consider two means for this; the first is to take the propagation delay as the minimum observed RTT value, and the second is to measure the queueing delay at the routers and feed it back to the sources. We choose FAST-TCP as a representative delay-based transmission control protocol for analysis and study the impact of delay knowledge errors on its performance. We have shown that while the first method destroys fairness and the uniqueness of the equilibrium, the stability of the protocol can easily be obtained through tuning the protocol terms appropriately. Even though the second technique is shown to preserve fairness and uniqueness of the equilibrium point, we have presented that unavoidable oscillations can occur around the equilibrium point.

Keywords

Congestion Control FAST-TCP Time-Delay Systems fairness stability 

References

  1. 1.
    Bonald, T., Feuillet, M., Proutiere, A.: Is the law of the jungle sustainable for the internet? In: Proc. IEEE INFOCOM (2009)Google Scholar
  2. 2.
    Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: new techniques for congestion detection and avoidance. SIGCOMM Comput. Commun. Rev. 24(4), 24–35 (1994)CrossRefGoogle Scholar
  3. 3.
    Brakmo, L.S., Peterson, L.L.: TCP Vegas: End to end congestion avoidance on a global internet. IEEE Journal on Selected Areas in Communications 13, 1465–1480 (1995)CrossRefGoogle Scholar
  4. 4.
    Briat, C., Hjalmarsson, H., Johansson, K.H., Karlsson, G., Jönsson, U., Sandberg, H.: Nonlinear state-dependent delay modeling and stability analysis of internet congestion control. In: 49th IEEE Conference on Decision and Control, Altlanta, USA (2010)Google Scholar
  5. 5.
    Chan, Y.C., Chan, C.T., Chen, Y.C., Ho, C.Y.: Performance improvement of congestion avoidance mechanism for TCP Vegas. In: International Conference on Parallel and Distributed Systems, Vol. 0, p. 605 (2004)Google Scholar
  6. 6.
    Cui, T., Andrew, L., Zukerman, M., Tan, L.: Improving the fairness of FAST TCP to new flows. IEEE Communications Letters 10(5), 414–416 (2006)CrossRefGoogle Scholar
  7. 7.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Basel (2003)MATHGoogle Scholar
  8. 8.
    Jacobson, V.: Congestion avoidance and control. In: SIGCOMM 1988: Symposium Proceedings on Communications Architectures and Protocols, pp. 314–329. ACM, New York (1988)CrossRefGoogle Scholar
  9. 9.
    Jacobsson, K.: Dynamic Modeling of Internet Congestion Control. Ph.D. thesis, KTH School of Electrical Engineering (2008)Google Scholar
  10. 10.
    Jain, R.: A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks. SIGCOMM Comput. Commun. Rev. 19(5), 56–71 (1989)CrossRefGoogle Scholar
  11. 11.
    La, R.J., Walrand, J., Anantharam, V.: Issues in TCP Vegas (2001)Google Scholar
  12. 12.
    Low, S.H., Peterson, L., Wang, L.: Understanding TCP vegas: a duality model. SIGMETRICS Perform. Eval. Rev. 29(1), 226–235 (2001)CrossRefGoogle Scholar
  13. 13.
    Lundqvist, H., Ivars, I.M., Karlsson, G.: Edge-based differentiated services. In: de Meer, H., Bhatti, N. (eds.) IWQoS 2005. LNCS, vol. 3552, pp. 259–270. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Lur’e, A., Postnikov, V.: On the theory of stability of control systems. Prikl. Mat. i Mekh (Applied mathematics and mechanics) 8(3), 3–13 (1944)Google Scholar
  15. 15.
    Michiels, W., Niculescu, S.: Stability and stabilization of time-delay systems. In: An Eigenvalue Based Approach, SIAM Publication, Philadelphia (2007)Google Scholar
  16. 16.
    Niculescu, S.I.: Delay effects on stability. In: A Robust Control Approach, vol. 269. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Rodríguez-Pérez, M., Herrería-Alonso, S., Fernández-Veiga, M., Lopez-Garcia, C.: The persistent congestion problem of FAST-TCP: analysis and solutions. European Transactions on Telecommunications 21(6), 504–518 (2010)CrossRefGoogle Scholar
  18. 18.
    Sandberg, H., Hjalmarsson, H., Jönsson, U., Karlsson, G., Johansson, K.: On performance limitations of congestion control. In: 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 5869–5876 (2009)Google Scholar
  19. 19.
    Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser, Boston (2004)MATHGoogle Scholar
  20. 20.
    Tan, L., Yuan, C., Zukerman, M.: FAST TCP: fairness and queuing issues. IEEE Communications Letters 9(8), 762–764 (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Crowcroft, J.: Eliminating periodic packet losses in the 4.3-tahoe BSD TCP congestion control algorithm. SIGCOMM Comput. Commun. Rev. 22(2), 9–16 (1992)CrossRefGoogle Scholar
  22. 22.
    Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)MATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Corentin Briat
    • 1
  • Emre A. Yavuz
    • 1
  • Gunnar Karlsson
    • 1
  1. 1.ACCESS Linnaeus CenterKTHSweden

Personalised recommendations