Revisiting TCP Congestion Control Using Delay Gradients

  • David A. Hayes
  • Grenville Armitage
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6641)


Traditional loss-based TCP congestion control (CC) tends to induce high queuing delays and perform badly across paths containing links that exhibit packet losses unrelated to congestion. Delay-based TCP CC algorithms infer congestion from delay measurements and tend to keep queue lengths low. To date most delay-based CC algorithms do not coexist well with loss-based TCP, and require knowledge of a network path’s RTT characteristics to establish delay thresholds indicative of congestion. We propose and implement a delay-gradient CC algorithm (CDG) that no longer requires knowledge of path-specific minimum RTT or delay thresholds. Our FreeBSD implementation is shown to coexist reasonably with loss-based TCP (NewReno) in lightly multiplexed environments, share capacity fairly between instances of itself and NewReno, and exhibits improved tolerance of non-congestion related losses (86% better goodput than NewReno in the presence of 1% packet losses).


Packet Loss Transmission Control Protocol Congestion Control Congestion Window Congestion Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    NewTCP project tools (August 2010), (accessed December 2, 2010)
  2. 2.
    Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (Proposed Standard), (April 1999), updated by RFC 3390
  3. 3.
    Bhandarkar, S., Reddy, A.L.N., Zhang, Y., Loguinov, D.: Emulating AQM from end hosts. In: SIGCOMM 2007: Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 349–360. ACM Press, New York (2007)Google Scholar
  4. 4.
    Biaz, S., Vaidya, N.: Discriminating congestion losses from wireless losses using inter-arrival times at the receiver. In: Proceedings of the IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, ASSET 1999, pp. 10–17 (1999)Google Scholar
  5. 5.
    Biaz, S., Vaidya, N.H.: Distinguishing congestion losses from wireless transmission losses. In: Seventh International Conference on Computer Communications and Networks (IC3N) (October 1998)Google Scholar
  6. 6.
    Brakmo, L.S., Peterson, L.L.: TCP Vegas: end to end congestion avoidance on a global internet. IEEE J. Sel. Areas Commun. 13(8), 1465–1480 (1995)CrossRefGoogle Scholar
  7. 7.
    Budzisz, L., Stanojevic, R., Shorten, R., Baker, F.: A strategy for fair coexistence of loss and delay-based congestion control algorithms. IEEE Commun. Lett. 13(7), 555–557 (2009)CrossRefGoogle Scholar
  8. 8.
    Cen, S., Cosman, P.C., Voelker, G.M.: End-to-end differentiation of congestion and wireless losses. IEEE/ACM Trans. Netw. 11(5), 703–717 (2003)CrossRefGoogle Scholar
  9. 9.
    Floyd, S.: Congestion Control Principles. RFC 2914 (Best Current Practice) (September 2000),
  10. 10.
    Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard) (April 2004),
  11. 11.
    Floyd, S., Jacobson, V.: On traffic phase effects in packet-switched gateways. Internetworking: Research and Experience 3(3), 115–156 (1992)Google Scholar
  12. 12.
    Ha, S., Rhee, I., Xu, L.: CUBIC: A new tcp-friendly high-speed tcp variant. ACM SIGOPS Operating System Review 42(5), 64–74 (2008)CrossRefGoogle Scholar
  13. 13.
    Hayes, D.: Timing enhancements to the FreeBSD kernel to support delay and rate based TCP mechanisms. Tech. Rep. 100219A, Centre for Advanced Internet Architectures, Swinburne University of Technology, Melbourne, Australia (February 19, 2010),
  14. 14.
    Hayes, D.A., Armitage, G.: Improved coexistence and loss tolerance for delay based TCP congestion control. In: 35th Annual IEEE Conference on Local Computer Networks (LCN 2010), Denver, Colorado, USA (October 2010)Google Scholar
  15. 15.
    Jain, R.: A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks. SIGCOMM Comput. Commun. Rev. 19(5), 56–71 (1989)CrossRefGoogle Scholar
  16. 16.
    King, R., Baraniuk, R., Riedi, R.: TCP-Africa: An adaptive and fair rapid increase rule for scalable TCP. In: IEEE INFOCOM 2005, pp. 1838–1848 (2005)Google Scholar
  17. 17.
    Kuzmanovic, A., Knightly, E.: TCP-LP: low-priority service via end-point congestion control. IEEE/ACM Trans. Netw. 14(4), 739–752 (2006)CrossRefGoogle Scholar
  18. 18.
    Leith, D., Shorten, R., McCullagh, G., Heffner, J., Dunn, L., Baker, F.: Delay-based AIMD congestion control. In: Proc. Protocols for Fast Long Distance Networks, California (2007)Google Scholar
  19. 19.
    Leith, D., Shorten, R., McCullagh, G., Dunn, L., Baker, F.: Making available base-rtt for use in congestion control applications. IEEE Communications Letters 12(6), 429–431 (2008)CrossRefGoogle Scholar
  20. 20.
    Martin, J., Nilsson, A., Rhee, I.: Delay-based congestion avoidance for tcp. IEEE/ACM Trans. Netw. 11(3), 356–369 (2003)CrossRefGoogle Scholar
  21. 21.
    Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the tcp congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27(3), 67–82 (1997)CrossRefGoogle Scholar
  22. 22.
    McCullagh, G., Leith, D.J.: Delay-based congestion control: Sampling and correlation issues revisited. Tech. rep., Hamilton Institute – - National University of Ireland, Maynooth (2008)Google Scholar
  23. 23.
    Postel, J.: Transmission Control Protocol. RFC 793 (Standard), (September 1981), (updated by RFC 3168)
  24. 24.
    Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Communication Review 27(1), 31–41 (1997)CrossRefGoogle Scholar
  25. 25.
    Stewart, L., Armitage, G., Huebner, A.: Collateral damage: The impact of optimised TCP variants on real-time traffic latency in consumer broadband environments. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 392–403. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: Proceedings of the 25th IEEE International Conference on Computer Communications, INFOCOM 2006, pp. 1–12 ( April 2006)Google Scholar
  27. 27.
    Wang, Z., Crowcroft, J.: Eliminating periodic packet losses in the 4.3-Tahoe BSD TCP congestion control algorithm. SIGCOMM Comput. Commun. Rev. 22(2), 9–16 (1992)CrossRefGoogle Scholar
  28. 28.
    Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhao, H., ning Dong, Y., Li, Y.: A packet loss discrimination algorithm in wireless ip networks. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom 2009, Beijing, pp. 1–4 (September 2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • David A. Hayes
    • 1
  • Grenville Armitage
    • 1
  1. 1.Centre for Advanced Internet ArchitecturesSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations