Advertisement

The Problem of Sensing Unused Cellular Spectrum

  • Daniel Willkomm
  • Sridhar Machiraju
  • Jean Bolot
  • Adam Wolisz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6641)

Abstract

Sensing mechanisms that estimate the occupancy of wireless spectrum are crucial to the success of approaches based on Dynamic Spectrum Access. In this paper, we present key insights into this problem by empirically investigating the design of sensing mechanisms applied to check the availability of excess capacity in CDMA voice networks. We focus on power-based sensing mechanisms since they are arguably the easiest and the most cost-effective. Our insights are developed using a unique dataset consisting of sensed power measurements in the band of a CDMA network operator as well as “ground-truth” information about primary users based on operator data. We find that although power at a single sensor is too noisy to help us accurately estimate unused capacity, there are well-defined signatures of call arrival and termination events. Using these signatures, we show that we can derive lower bound estimates of unused capacity that are both useful (non-zero) and conservative (never exceed the true value). We also use a combination of measurement data and analysis to deduce that multiple sensors are likely to be quite effective in eliminating the inaccuracies of single-sensor estimates.

Keywords

Cognitive radio spectrum sensing dynamic spectrum access 

References

  1. 1.
    Agilent: W1314a datasheet, http://www.agilent.com
  2. 2.
    Daoud, A.A., Alanyali, M., Starobinski, D.: Secondary pricing of spectrum in cellular CDMA networks. In: Proc. of IEEE DySPAN 2007 (2007)Google Scholar
  3. 3.
    Alyfantis, G., Marias, G., Hadjiefthymiades, S., Merakos, L.: Non-cooperative dynamic spectrum access for cdma networks. In: Proc. of IEEE GLOBECOM 2007 (2007)Google Scholar
  4. 4.
    Buddhikot, M., Ryan, K.: Spectrum management in coordinated dynamic spectrum access based cellular networks. In: Proc. of IEEE DySPAN 2005 (2005)Google Scholar
  5. 5.
    Chen, D., Yin, S., Zhang, Q., Liu, M., Li, S.: Mining spectrum usage data: a large-scale spectrum measurement study, pp. 13–24 (2009)Google Scholar
  6. 6.
    Chiang, R., Rowe, G., Sowerby, K.: A quantitative analysis of spectral occupancy measurements for cognitive radio. In: Proc. of VTC Spring 2007 (2007)Google Scholar
  7. 7.
    Guo, J., Liu, F., Zhu, Z.: Estimate the call duration distribution parameters in GSM system based on k-l divergence method. In: Proc. of WiCom 2007 (2007)Google Scholar
  8. 8.
    Hamouda, S., Hamdaoui, B.: Dynamic spectrum access in heterogeneous networks: Hsdpa and wimax. In: Proc of IWCMC 2009 (2009)Google Scholar
  9. 9.
    Kamakaris, T., Buddhikot, M., Iyer, R.: A case for coordinated dynamic spectrum access in cellular networks. In: Proc. of IEEE DySPAN 2005 (2005)Google Scholar
  10. 10.
    Kim, H., Shin, K.G.: In-band Spectrum Sensing in Cognitive Radio Networks: Energy Detection or Feature Detection? In: Proc. of ACM Mobicom 2008 (2008)Google Scholar
  11. 11.
    MacDonald, J.T.: A survey of spectrum occupancy in chicago. Tech. rep., Illinois Institute of Technology (2007)Google Scholar
  12. 12.
    McHenry, M.A., Tenhula, P.A., McCloskey, D., Roberson, D.A., Hood, C.S.: Chicago spectrum occupancy measurements & analysis and a long-term studies proposal. In: Proc. of TAPAS 2006 (2006)Google Scholar
  13. 13.
    Mishra, S.M., Sahai, A., Brodersen, R.W.: Cooperative sensing among cognitive radios. In: Proc. of IEEE ICC 2006 (2006)Google Scholar
  14. 14.
    Pham, H.N., Zhang, Y., Engelstad, P.E., Skeie, T., Eliassen, F.: Optimal cooperative spectrum sensing in cognitive sensor networks. In: Proc. of IWCMC 2009 (2009)Google Scholar
  15. 15.
    Sahai, A., Tandra, R., Mishra, S.M., Hoven, N.: Fundamental design tradeoffs in cognitive radio systems. In: Proc. of TAPAS 2006 (2006)Google Scholar
  16. 16.
    Sun, C., Zhang, W., Letaief, K.B.: Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In: Proc IEEE WCNC 2007 (2007)Google Scholar
  17. 17.
    Tandra, R., Sahai, A.: Snr walls for signal detection. IEEE J. Sel. Topics Signal Process. 2(1), 4–17 (2008)CrossRefGoogle Scholar
  18. 18.
    Vanghi, V., Damnjanovic, A., Vojcic, B.: The cdma2000 System for Mobile Communications: 3G Wireless Evolution. Prentice Hall PTR, Englewood Cliffs (2004)Google Scholar
  19. 19.
    Willkomm, D., Machiraju, S., Bolot, J., Wolisz, A.: Primary Users in Cellular Networks: A Large-scale Measurement Study. In: Proc. of IEEE DySPAN 2008 (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Daniel Willkomm
    • 1
  • Sridhar Machiraju
    • 2
  • Jean Bolot
    • 3
  • Adam Wolisz
    • 1
    • 4
  1. 1.Telecommunication Networks GroupTechnische Universität BerlinBerlinGermany
  2. 2.GoogleMountain ViewUSA
  3. 3.SprintBurlingameUSA
  4. 4.University of CaliforniaBerkeleyUSA

Personalised recommendations