Advertisement

Ontology Population and Enrichment: State of the Art

  • Georgios Petasis
  • Vangelis Karkaletsis
  • Georgios Paliouras
  • Anastasia Krithara
  • Elias Zavitsanos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6050)

Abstract

Ontology learning is the process of acquiring (constructing or integrating) an ontology (semi-) automatically. Being a knowledge acquisition task, it is a complex activity, which becomes even more complex in the context of the BOEMIE project, due to the management of multimedia resources and the multi-modal semantic interpretation that they require. The purpose of this chapter is to present a survey of the most relevant methods, techniques and tools used for the task of ontology learning. Adopting a practical perspective, an overview of the main activities involved in ontology learning is presented. This breakdown of the learning process is used as a basis for the comparative analysis of existing tools and approaches. The comparison is done along dimensions that emphasize the particular interests of the BOEMIE project. In this context, ontology learning in BOEMIE is treated and compared to the state of the art, explaining how BOEMIE addresses problems observed in existing systems and contributes to issues that are not frequently considered by existing approaches.

Keywords

Ontology learning Ontology population Ontology enrichment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agichtein, E., Gravano, L.: Snowball: Extracting Relations from Large Plain-Text Collections. In: Proceedings of the 5th ACM International Conference on Digital Libraries (ACM DL), pp. 85–94 (2000)Google Scholar
  2. 2.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching Very Large Ontologies Using the WWW. In: Workshop on Ontology Construction of the European Conference of A.I., ECAI 2000 (2000)Google Scholar
  3. 3.
    Ahmad, K., Davies, A., Fulford, H., Rogers, M.: What is a term? The Semi-Automatic Extraction of Terms from Text. John Benjamins Publishing Company, Amsterdam (1994)Google Scholar
  4. 4.
    Alani, H., Sanghee, K., Millard, E.D., Weal, J.M., Lewis, P.H., Hall, W., Shadbolt, N.: Automatic Extraction of Knowledge from Web Documents. In: Proceeding of (HLT 2003) (2003)Google Scholar
  5. 5.
    Alani, H., Sanghee, K., Millard, E.D., Weal, J.M., Lewis, P.H., Hall, W., Shadbolt, N.: Web based Knowledge Extraction and Consolidation for Automatic Ontology Instantiation. In: Proceedings of the Workshop on Knowledge Markup and Semantic Annotation at the Second International Conference on Knowledge Capture (K-CAP 2003), Florida, USA (2003)Google Scholar
  6. 6.
    Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.R.: Automatic Ontology-Based Knowledge Extraction from Web Documents. IEEE Intelligent Systems 18(1), 14–21 (2003)CrossRefGoogle Scholar
  7. 7.
    Alfonseca, E., Ruiz-Casado, M., Okumura, M., Castells, P.: Towards Large-scale Non-taxonomic Relation Extraction: Estimating the Precision of Rote Extractors. In: Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge – OLP 2006, Sydney, Australia, pp. 49–56 (July 2006)Google Scholar
  8. 8.
    Aussenac-Gilles, N., Biebow, B., Szulman, S. (eds.): EKAW 2000 Workshop on Ontologies and Texts (2000), http://CEURWS.org/Vol-51/CEUR
  9. 9.
    Aussenac-Gilles, N., Maedche, A. (eds.): ECAI 2002 Workshop on Machine Learning and Natural Language Processing for Ontolology Learning (2002), http://www.inria.fr/acacia/OLT2002
  10. 10.
    Baroni, M., Bisi, S.: Using cooccurrence statistics & the web to discover synonyms in a technical language. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, vol. 5, pp. 1725–1728 (2004)Google Scholar
  11. 11.
    Burton Jones, A., Veda Storey, C., Sugumaran, V., Ahluwalia, P.: A Semiotic Suite for Assessing the Quality of Ontologies. Data and Knowledge Engineering (2004)Google Scholar
  12. 12.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  13. 13.
    Blei, D.M., Griffiths, T.L., Jordan, M.I., Tenenbaum, J.B.: Hierarchical Topic Models and the Nested Chinese Restaurant Process. Advances in Neural Information Processing Systems 16 (2004)Google Scholar
  14. 14.
    Brank, J., Mladenic, D., Grobelnik, M.: Gold standard based ontology evaluation using instance assignment. In: Proceedings of the EON Workshop (2006)Google Scholar
  15. 15.
    Brewster, C., Ciravegna, F., Wilks, Y.: User-Centred Ontology Learning for Knowledge Management. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 203–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology evaluation. In: Proceedings of the International Conference on Language Resources and Evaluation (2004)Google Scholar
  17. 17.
    Brewster, C., Iria, J., Zhang, Z., Ciravegna, F., Guthrie, L., Wilks, Y.: Dynamic Iterative Ontology Learning. In: Proceedings of Recent Advances in Natural Language Processing (RANLP 2007), Borovets, Bulgaria (2007)Google Scholar
  18. 18.
    Buitelaar, P., Handschuh, S., Magnini, B. (eds.): Proceedings of the ECAI 2004 Workshop on Ontologies, Learning and Population (2004)Google Scholar
  19. 19.
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005) ISBN: 1-58603-523-1 Google Scholar
  20. 20.
    Buitelaar, P., Cimiano, P., Loos, B.: Bringing the Gap between Text and Knowledge. In: Workshop on Ontology Learning and Population (2006)Google Scholar
  21. 21.
    Buitelaar, P., Cimiano, P., Racioppa, S., Siegel, M.: Ontology-based Information Extraction with SOBA. In: Proceedings of the International Conference on Language Resources and Evaluation, pp. 2321–2324. ELRA (May 2006)Google Scholar
  22. 22.
    Buitelaar, P., Cimiano, P., Paliouras, G., Spiliopoulou, M.: Proceedings of the ECAI 2008 Workshop on Ontology Learning and Population (OLP3) (2008)Google Scholar
  23. 23.
    Castano, S., Peraldi, I.S.E., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R., Montanelli, S., Petasis, G., Wessel, M.: Multimedia Interpretation for Dynamic Ontology Evolution. Journal of Logic and Computation (September 2008)Google Scholar
  24. 24.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer-Verlag New York, Inc., New York (2006)Google Scholar
  25. 25.
    Ciravegna, F., Dingli, A., Petrelli, D.: Document Annotation via Adaptive Information Extraction. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, August 11-15 (2002)Google Scholar
  26. 26.
    Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery, S.: Learning to construct knowledge bases from the World Wide Web. Artificial Intelligence 118, 69–113 (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: an architecture for Development of Robust HLT Applications. In: Proceedings of ACL (2002)Google Scholar
  28. 28.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, Phil. USA (2002)Google Scholar
  29. 29.
    Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge (2005)Google Scholar
  30. 30.
    Damerau, F.J.: Evaluating domain-oriented multiword terms from texts. Information Processing and Management 29(4), 433–447 (1993)CrossRefGoogle Scholar
  31. 31.
    Downey, O., Etzioni, D., Soderland, S., Weld, D.: Learning Text Patterns for Web Information Extraction and Assessment. In: Proceedings of the AAAI Workshop on Adaptive Text Extraction and Mining (2004)Google Scholar
  32. 32.
    Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schäfer, U., Xu, F.: Shallow processing with unification and typed feature structures – foundations and applications. Künstliche Intelligenz 1, 17–23 (2004)Google Scholar
  33. 33.
    Ehrig, M., Haase, P., Stohanovic, N., Hefke, M.: Similarity for Ontologies – a Comprehensive Framework. In: Proceedings of the European Conference in Inf. Sys. (2005)Google Scholar
  34. 34.
    Etzioni, O., Kok, S., Soderland, S., Cagarella, M., Popescu, A.M., Weld, D.S., Downey, D., Shaker, T., Yates, A.: Web-Scale Information Extraction in KnowItAll (Preliminary Results). In: Proceedings of the 13th International World Wide Web Conference (WWW 2004), New York, pp. 100–110 (2004)Google Scholar
  35. 35.
    Etzioni, O., Kok, S., Soderland, S., Cagarella, M., Popescu, A.M., Weld, D.S., Downey, D., Shaker, T., Yates, A.: Unsupervised named-entity extraction from the Web: An experimental Study. Artificial Intelligence 165, 91–134 (2005)CrossRefGoogle Scholar
  36. 36.
    Euzenat, J., Pavel, S.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  37. 37.
    Faatz, A., Steinmetz, R.: Ontology Enrichment with texts from the WWW. In: Semantic Web Mining 2nd Workshop at ECML/PKDD-2002. Helsinki, Finland (2002)Google Scholar
  38. 38.
    Fellbaum, C.: WordNet: An On-Line Lexical Database and Some of its Applications. MIT Press, CambridgeGoogle Scholar
  39. 39.
    Faure, D., Nedellec, C., Rouveirol, C.: Acquisition of Semantic Knowledge using Machine Learning Methods: The System ASIUM, Technical Report number ICS-TR-88-16, Laboratoire de Recherche en Informatique, Inference and Learning Group, Universite Paris Sud (1998)Google Scholar
  40. 40.
    Faure, D., Poibeau, T.: First experiments of using semantic knowledge learned by ASIUM for information extraction task using INTEX. In: Proceedings of the ECAI 2000 Workshop on Ontology Learning (OL 2000) (2000)Google Scholar
  41. 41.
    Fortuna, B., Mladevic, D., Grobelnik, M.: Visualization of Text Document Corpus. In: ACAI 2005 Summer School (2005)Google Scholar
  42. 42.
    Fox, M.S., Barbuceanu, M., Gruninger, M., Lin, J.: An Organization Ontology for Enterprise Modelling. MIT Press, Cambridge (1998)Google Scholar
  43. 43.
    Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: The c-value/nc-value method. International Journal on Digital Libraries 3(2), 115–130 (2000)CrossRefGoogle Scholar
  44. 44.
    Gruber, T.: Towards principles for the design of ontologies used for knowledge sharing. Int. J. of Human and Computer Studies 43, 907–928 (1994)CrossRefGoogle Scholar
  45. 45.
    Gómez-Pérez, A., Manzano-Macho, D.: A survey of ontology learning methods and techniques. Onto-web IST Project, Deliverable 1.5, http://www.ontoweb.aifb.uni-karlsruhe.de/Members/ruben/Deliverable%201.5
  46. 46.
    Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Communications of the ACM 45(2), 61–65 (2002)CrossRefGoogle Scholar
  47. 47.
    Gupta, K.M., Aha, D., Marsh, E., Maney, T.: An Architecture for engineering sublanguage WordNets. In: Proceedings of the First International Conference On Global WordNet, pp. 207–215. Central Institute of Indian Languages, Mysore (2002)Google Scholar
  48. 48.
    Gurevych, I., Malaka, R., Porzel, R., Zorn, H.: Semantic coherence scoring using an ontology. In: Proceedings of the HLT/NAACL (2003)Google Scholar
  49. 49.
    Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  50. 50.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  51. 51.
    Haase, P., Völker, J.: Ontology Learning and Reasoning — Dealing with Uncertainty and Inconsistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 366–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  52. 52.
    Hahn, U., Marko, K.G.: Ontology and Lexicon Evolution by Text Understanding. In: Proceedings of the ECAI 2002 Workshop on Machine Learning and Natural Language Processing for Ontology Engineering (OLT 2002), Lyon, France (2002)Google Scholar
  53. 53.
    Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: Proceedings of the 14th International Conference on Computational Linguistics, Nantes, France (1992)Google Scholar
  54. 54.
    Harris, Z.: Mathematical Structures of Language. John Wiley & Sons, Chichester (1968); Hindle, D.: Noun classification from predicate-argument structures. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 268–275 (1990)zbMATHGoogle Scholar
  55. 55.
    Iria, J., Brewster, C., Ciravegna, F., Wilks, Y.: An Incremental Tri-Partite Approach To Ontology Learning. In: The 5th International Conference on Language Resources and Evaluation, May 24-25-26, pp. 24–25 (2006)Google Scholar
  56. 56.
    Iwanska, L.M., Mata, N., Kruger, K.: Fully Automatic Acquisition of Taxonomic Knowledge from Large Corpora of Texts, pp. 335–345. MIT/AAAI Press (2000)Google Scholar
  57. 57.
    Kietz, J.U., Maedche, A., Volz, R.: A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet. In: Proceedings of the ECAW 2000 Workshop Ontologies and Text, Juan-Les-Pins, France (2000)Google Scholar
  58. 58.
    Kim, S.-S., Son, J.-W., Park, S.-B., Park, S.-Y., Lee, C., Wang, J.-H., Jang, M.-G., Park, H.-G.: OPTIMA: An Ontology Population System. In: 3rd Workshop on Ontology Learning and Population (July 2008)Google Scholar
  59. 59.
    Kim, S., Alani, H., Hall, W., Lewis, P., Millard, D., Shadbolt, N., Weal, M.: Artequakt: Generating Tailored Biographies from Automatically Annotated Fragments from the Web. In: Proceedings of Workshop on Semantic Authoring, Annotation & Knowledge Markup (SAAKM 2002), the 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France, pp. 1–6 (2002)Google Scholar
  60. 60.
    Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., Cofino, T.: Glossary extraction and utilization in the information search and delivery system for IBM Technical SupportΣ. IBM System Journal 43(3) (2004)Google Scholar
  61. 61.
    Krauthammer, M., Nenadic, G.: Term identification in the biomedical literature. Journal of Biomedical Informatics 37, 512–526 (2004)CrossRefGoogle Scholar
  62. 62.
    Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML) (2001)Google Scholar
  63. 63.
    Landauer, T.K., Dumais, S.T.: A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review 104, 211–240 (1997)CrossRefGoogle Scholar
  64. 64.
    Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In: The Fifth International Conference on Systems Documentation, ACM SIGDOC (1986)Google Scholar
  65. 65.
    Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory 10(8), 707–710 (1966)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Li, W., McCallum, A.: Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations. In: Proceedings of the 23rd Internationcal Conference on Machine Learning, pp. 577–584 (2006)Google Scholar
  67. 67.
    Li, W., Blei, D., McCallum, A.: Nonparametric Bayes Pachinko Allocation. In: Uncertainty in Artificial Intelligence (2007)Google Scholar
  68. 68.
    Lin, D., Pantel, P.: Induction of semantic classes from natural language text. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 317–322 (2001)Google Scholar
  69. 69.
    Lin, D., Pantel, P.: Dirt - Discovery of Inference Rules from Text. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 323–328 (2001)Google Scholar
  70. 70.
    Lin, D., Pantel, P.: Concept discovery from text. In: Proceedings of the International Conference on Computational Linguistics (COLING), pp. 577–583 (2002)Google Scholar
  71. 71.
    Lisi, F.A.: Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in AL-Log. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 118–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  72. 72.
    Lozano-Tello, A., Gomez-Perez, A., Sosa, E.: Selection of Ontologies for the Semantic Web, pp. 413–416. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  73. 73.
    Lozano-Tello, A., Gomez-Perez, A.: Ontometric: A method to choose the appropriate ontology. Journal of Database Management. Special Issue on Ontological Analysis, Evaluation, and Engineering of Business Systems Analysis Methods 15(2), 1–18 (2004)Google Scholar
  74. 74.
    Maedche, A., Staab, S.: Semi-Automatic Engineering of Ontologies from Text. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering (2000)Google Scholar
  75. 75.
    Maedche, A., Staab, S.: Discovering Conceptual Relations from Text. In: Proceedings of ECAI 2000. IOS Press, Amsterdam (2000)Google Scholar
  76. 76.
    Maedche, A., Staab, S., Nédellec, C., Hove, E. (eds.): IJCAI 2001 Workshop on Ontology Learning (2001), http://CEUR-WS.org/Vol-38/CEUR
  77. 77.
    Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Journal on Intelligent Systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  78. 78.
    Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  79. 79.
    Maedche, A., Staab, S.: Ontology Learning. In: Handbook on Ontologies (2004)Google Scholar
  80. 80.
    Maynard, D., Peters, W., Li, Y.: Metrics for evaluation of ontology based information extraction. In: Proceedings of the EON 2006 Workshop (2006)Google Scholar
  81. 81.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  82. 82.
    Mima, H., Ananiadou, S., Nenadic, G.: The atract workbench: Automatic term recognition and clustering for terms. In: Matoušek, V., Mautner, P., Mouček, R., Tauser, K. (eds.) TSD 2001. LNCS (LNAI), vol. 2166, p. 126. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  83. 83.
    Mimno, D., Li, W., McCallum, A.: Mixtures of Hierarchical Topics with Pachinko Allocation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 633–640 (2007)Google Scholar
  84. 84.
    Morin, E.: Automatic Acquisition of Semantic Relations Between Terms from Technical Corpora. In: Proceedings of the Fifth International Congress on Terminology and Knowledge Engineering - TKE 1999 (1999)Google Scholar
  85. 85.
    Navigli, R., Velardi, P.: Enriching a Formal Ontology with a Thesaurus: an Application in the Cultural Heritage Domain. In: Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge – OLP 2006, Sydney, Australia, pp. 1–9 (July 2006)Google Scholar
  86. 86.
    Navigli, R., Velardi, P.: Ontology Enrichment Through Automatic Semantic Annotation of On-Line Glossaries. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 126–140. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  87. 87.
    Porzel, R., Malaka, R.: A task-based approach for ontology evaluation. In: ECAI 2004 Workshop on Ontology Learning and Population (2004)Google Scholar
  88. 88.
    Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)Google Scholar
  89. 89.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 17–30 (1989)Google Scholar
  90. 90.
    Sabou, M., Wroe, C., Goble, C., Stuckenschmidt, H.: Learning domain ontologies for semantic web service descriptions. Journal of Web Semantics 3(4) (2005)Google Scholar
  91. 91.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  92. 92.
    Sangun, P., Juyoung, K., Wooju, K.: A Framework for Ontology Based Rule Acquisition from Web Documents in Web Reasoning and Rule Systems (2007)Google Scholar
  93. 93.
    Sclano, F., Velardi, P.: TermExtractor: a Web Application to Learn the Common Terminology of Interest Groups and Research Communities. In: 9th Conf. on Terminology and Artificial Intelligence TIA 2007, Sophia Antinopolis (October 2007)Google Scholar
  94. 94.
    Schütze, H.: Word space. Advances in Neural Information Processing Systems 5 (1993)Google Scholar
  95. 95.
    Schutz, A., Buitelaar, P.: RelExt: A Tool for Relation Extraction from Text in Ontology Extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  96. 96.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent Systems 21(3), 96–101 (2006)CrossRefGoogle Scholar
  97. 97.
    Shamsfar, M., Barforoush, A.A.: An Introduction to HASTI: An Ontology Learning System. In: Proceedings of 6th Conference on Artificial Intelligence and Soft Computing (ASC 2002), Banff, Canada (June 2002)Google Scholar
  98. 98.
    Shamsfard, M.: Designing the ontology learning Model, Prototyping in a Persian Text Understanding System, Ph.D. Dissertation, Computer Engineering Dept., AmirKabir University of Technology, Tehran, Iran (January 2003)Google Scholar
  99. 99.
    Shamsfard, M., Barforoush, A.A.: The state of the art in ontology learning: a framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003), DOI: http://dx.doi.org/10.1017/S0269888903000687 CrossRefGoogle Scholar
  100. 100.
    Shamsfar, M., Barforoush, A.A.: Learning Ontologies from Natural Language Texts. International Journal of Human-Computer Studies (60), 17–63 (2004)Google Scholar
  101. 101.
    Schulte im Walde, S.: Clustering Verbs Semantically According to their Alternation Behaviour. In: Proceedings of the 18th International Conference on Computational Linguistics (COLINGS), pp. 747–753 (2000)Google Scholar
  102. 102.
    Snow, R., Jurafsky, D., Ng, A.Y.: Semantic Taxonomy Induction from Heterogeneous Evidence. In: ACLΥ 2006 (2006)Google Scholar
  103. 103.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning Syntactic Patterns for Automatic Hypernym Discovery. In: Proceedings of Advances in Neural Information Processing Systems (2004)Google Scholar
  104. 104.
    Specia, L., Motta, E.: A hybrid approach for extracting semantic relations from texts. In: Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge – OLP 2006, Sydney, Australia, pp. 57–64 (July 2006)Google Scholar
  105. 105.
    Staab, S., Maedche, A., Nedellec, C., Wiemer- Hastings, P. (eds.): Proceedings of the Workshop on Ontology Learning (2000), http://CEUR-WS.org/Vol-31/CEUR
  106. 106.
    Suchanek, F.M., Ifrim, G., Weikum, G.: LEILA: Learning to Extract Information by Linguistic Analysis. In: Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge – OLP 2006, Sydney, Australia, pp. 18–25 (July 2006)Google Scholar
  107. 107.
    Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  108. 108.
    Yang, H., Callan, J.: A Metric-based Framework for Automatic Taxonomy Induction. In: ACL 2009 (2009)Google Scholar
  109. 109.
    Yarowsky, D.: Word-sense disambiguation using statistical models of roget’s categories trained on large corpora. In: COLING 1992, Nantes (1992)Google Scholar
  110. 110.
    Velardi, P., Navigli, R., Cuchiarelli, A., Neri, F.: Evaluation of OntoLearn, a Methodology for Automatic Learning of Domain Ontologies. IOS Press, Amsterdam (2005)Google Scholar
  111. 111.
    Velardi, P., Cucchiarelli, A., Petit, M.: A Taxomony learning Method and its Application to Characterize a Scientific Web Community. IEEE Transaction on Data and Knowledge Engineering (TDKE) 19(2), 180–191 (2007)CrossRefGoogle Scholar
  112. 112.
    Völker, J., Vrandečić, D., Sure, Y.: Automatic Evaluation of Ontologies (AEON). In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 716–731. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  113. 113.
    Weber, N., Buitelaar, P.: Web-based Ontology Learning with ISOLDE. In: Proceedings of the Workshop on Web Content Mining with Human Language at the International Semantic Web Conference, USA (2006)Google Scholar
  114. 114.
    Wei, W., Barnaghi, P.: Probabilistic Topic Models for Learning Terminological Ontologies. Transaction on Knowledge and Data Engineering 22(7), 1028–1040 (2010)CrossRefGoogle Scholar
  115. 115.
    Zavitsanos, E., Paliouras, G., Vouros, G.: Ontology Learning and Evaluation: A survey. Technical report, DEMO-(2006-3), NCSR Demokritos, Athens, Greece (2006)Google Scholar
  116. 116.
    Zavitsanos, E., Paliouras, G., Vouros, G.: A Distributional Approach to Evaluating Ontology Learning Methods Using A Gold Standard. In: 3rd Ontology Learning and Population Workshop, ECAI 2008 (2008)Google Scholar
  117. 117.
    Zavitsanos, E., Paliouras, G., Vouros, G.A., Petridis, S.: Learning Subsumption Hierarchies of Ontology Concepts from Texts. Web Intelligence and Agent Systems: An International Journal 8(1), 37–51 (2010)Google Scholar
  118. 118.
    Zavitsanos, E., Paliouras, G., Vouros, G.A.: Gold Standard Evaluation of Ontology Learning Methods Through Ontology Transformation and Alignment. Transactions on Knowledge and Data Engineering (2010) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georgios Petasis
    • 1
  • Vangelis Karkaletsis
    • 1
  • Georgios Paliouras
    • 1
  • Anastasia Krithara
    • 1
  • Elias Zavitsanos
    • 1
  1. 1.Institute of Informatics and TelecommunicationsNational Centre for Scientific Research “Demokritos”Ag. ParaskeviGreece

Personalised recommendations