Advertisement

Genomic Perspectives on the Long-Term Absence of Sexual Reproduction in Animals

  • Etienne G. J. Danchin
  • Jean-François Flot
  • Laetitia Perfus-Barbeoch
  • Karine Van Doninck
Chapter

Abstract

Sexual reproduction, the exchange and recombination of genetic material between different individuals, is commonly viewed as one of the most important sources of genomic diversity in animals. This genomic diversity is subject to natural selection and, consequently, the fittest genomes relative to the environment survive and persist. According to this vision, the absence of sexual reproduction in animals is believed to inexorably lead to an evolutionary dead end as asexual animals become unable to adapt to changing environmental conditions. Yet, several animal lineages suspected to have been reproducing exclusively asexually for millions of years actually survived environmental changes and are not necessarily restricted to specialized ecological niches. The sources of genomic variations that have contributed to the evolutionary success and persistence of these lineages is currently unknown. Here we will review and discuss these known cases of long-term survival of asexually reproducing animal lineages with a focus on recent genomic findings.

Keywords

Sexual Reproduction Oribatid Mite Animal Lineage Bdelloid Rotifer Asexual Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abad P, Gouzy J et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 8:909–915CrossRefGoogle Scholar
  2. Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 26:14473–14477CrossRefGoogle Scholar
  3. Arkhipova I, Meselson M (2005a) Deleterious transposable elements and the extinction of asexuals. Bioessays 1:76–85CrossRefGoogle Scholar
  4. Arkhipova IR, Meselson M (2005b) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 33:11781–11786CrossRefGoogle Scholar
  5. Barraclough TG, Fontaneto D et al (2007) Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol Biol Evol 9:1952–1962CrossRefGoogle Scholar
  6. Bird DM, Williamson VM et al (2009) The genomes of root-knot nematodes. Annu Rev Phytopathol 47:333–351PubMedCrossRefGoogle Scholar
  7. Birky CW Jr (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 1:427–437Google Scholar
  8. Birky CW, Wolf C et al (2005) Speciation and selection without sex. Hydrobiologia 1:29–45CrossRefGoogle Scholar
  9. Bishop DK, Williamson MS et al (1987) The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiae. Nature 6128:362–364CrossRefGoogle Scholar
  10. Burt A (2000) Sex, recombination, and the efficacy of selection – was Weismann right? Evolution 2:337–351Google Scholar
  11. Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 4:311–317CrossRefGoogle Scholar
  12. Castagnone-Sereno P (2006) Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 4:282–289CrossRefGoogle Scholar
  13. Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 1:1–25CrossRefGoogle Scholar
  14. Danchin EG, Rosso MN et al (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 41:17651–17656CrossRefGoogle Scholar
  15. De Ley IT, De Ley P et al (2002) Phylogenetic analyses of Meloidogyne small subunit rDNA. J Nematol 4:319–327Google Scholar
  16. Dieterich C, Clifton SW et al (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 10:1193–1198CrossRefGoogle Scholar
  17. Domes K, Norton RA et al (2007) Reevolution of sexuality breaks Dollo’s law. Proc Natl Acad Sci USA 17:7139–7144CrossRefGoogle Scholar
  18. Doncaster CP, Pound GE et al (2000) The ecological cost of sex. Nature 6775:281–285CrossRefGoogle Scholar
  19. Dunn CW, Hejnol A et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 7188:745–749CrossRefGoogle Scholar
  20. Esbenshade PR, Triantaphyllou AC (1987) Enzymatic relationships and evolution in the genus Meloidogyne (Nematoda: Tylenchida). J Nematol 1:8–18Google Scholar
  21. Fisher RA (1930) The genetical theory of natural selection. Clarendon, OxfordGoogle Scholar
  22. Fontaneto D, Ficetola GF et al (2006) Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Glob Ecol Biogeogr 2:153–162CrossRefGoogle Scholar
  23. Fontaneto D, Herniou EA et al (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 4:e87CrossRefGoogle Scholar
  24. Fontaneto D, Barraclough TG et al (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 13:3136–3146CrossRefGoogle Scholar
  25. Ghedin E, Wang S et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 5845:1756–1760CrossRefGoogle Scholar
  26. Gilbert JJ (1974) Dormancy in rotifers. Trans Am Microsc Soc 4:490–513CrossRefGoogle Scholar
  27. Gladyshev EA, Meselson M et al (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 5880:1210–1213CrossRefGoogle Scholar
  28. Hammer M, Wallwork JA (1979) A review of the world distribution of oribatid mites (Acari: Cryptostigmata) in relation to continental drift. Biol Skr Dan Vid Selsk 22:1–31Google Scholar
  29. Heethoff M, Domes K et al (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 1:392–402CrossRefGoogle Scholar
  30. Heethoff M, Norton RA et al (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, Dijk P (eds) Lost sex. Springer, Dordrecht, pp 241–257CrossRefGoogle Scholar
  31. Hoffmann AA, Reynolds KT et al (2008) A high incidence of parthenogenesis in agricultural pests. Proc Biol Sci 1650:2473–2481CrossRefGoogle Scholar
  32. Holterman M, Karssen G et al (2009) Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 3:227–235CrossRefGoogle Scholar
  33. Hsu WS (1956a) Oogenesis in the Bdelloidea rotifer, Philodina roseola. Cellule 57:283–296Google Scholar
  34. Hsu WS (1956b) Oogenesis in Habrotrocha tridens (Milne). Biol Bull 3:364–374CrossRefGoogle Scholar
  35. Hugall A, Stanton J et al (1997) Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla. Mol Biol Evol 1:40–48CrossRefGoogle Scholar
  36. Hugall A, Stanton J et al (1999) Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol Biol Evol 2:157–164CrossRefGoogle Scholar
  37. Hur JH, Van Doninck K et al (2009) Degenerate tetraploidy was established before bdelloid rotifer families diverged. Mol Biol Evol 2:375–383CrossRefGoogle Scholar
  38. Jaffe DB, Butler J et al (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 1:91–96CrossRefGoogle Scholar
  39. Janko K, Drozd P et al (2008) Clonal turnover versus clonal decay: a null model for observed patterns of asexual longevity, diversity and distribution. Evolution 5:1264–1270CrossRefGoogle Scholar
  40. Kim JH, Waterman MS et al (2007) Diploid genome reconstruction of Ciona intestinalis and comparative analysis with Ciona savignyi. Genome Res 7:1101–1110CrossRefGoogle Scholar
  41. Kirkpatrick M, Jenkins CD (1989) Genetic segregation and the maintenance of sexual reproduction. Nature 6222:300–301CrossRefGoogle Scholar
  42. Leasi F, Fontaneto D et al (2010) Phylogenetic constraints in the muscular system of rotifer males: investigation on the musculature of males versus females of Brachionus manjavacas and Epiphanes senta (Rotifera, Monogononta). J Zool 2:109–119Google Scholar
  43. Leroy S, Duperray C et al (2003) Flow cytometry for parasite nematode genome size measurement. Mol Biochem Parasitol 1:91–93CrossRefGoogle Scholar
  44. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 13:1658–1659CrossRefGoogle Scholar
  45. Lunt DH (2008) Genetic tests of ancient asexuality in root knot nematodes reveal recent hybrid origins. BMC Evol Biol 8:194PubMedCrossRefGoogle Scholar
  46. Mandegar MA, Otto SP (2007) Mitotic recombination counteracts the benefits of genetic segregation. Proc Biol Sci 1615:1301–1307CrossRefGoogle Scholar
  47. Margulies M, Egholm M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 7057:376–380Google Scholar
  48. Mark Welch DB, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 5469:1211–1215CrossRefGoogle Scholar
  49. Mark Welch DB, Meselson MS (2001) Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci USA 12:6720–6724CrossRefGoogle Scholar
  50. Mark Welch DB, Cummings MP et al (2004) Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proc Natl Acad Sci USA 6:1622–1625CrossRefGoogle Scholar
  51. Mark Welch DB, Mark Welch JL et al (2008) Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 13:5145–5149CrossRefGoogle Scholar
  52. Mark Welch DB, Ricci C et al (2009) Bdelloid rotifers: progress in understanding the success of an evolutionary scandal. In: Schön I, Martens K, Dijk P (eds) Lost sex. Springer, Dordrecht, pp 259–279CrossRefGoogle Scholar
  53. Martens K, Horne DJ et al (1998) Age and diversity of non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 37–55Google Scholar
  54. Martens K, Rossetti G et al (2003) How ancient are ancient asexuals? Proc Biol Sci 1516:723–729CrossRefGoogle Scholar
  55. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 3:633–637Google Scholar
  56. Maynard Smith J (1986) Contemplating life without sex. Nature 6095:300–301CrossRefGoogle Scholar
  57. Muller HJ (1932) Some genetic aspects of sex. Am Nat 703:118–138CrossRefGoogle Scholar
  58. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9PubMedGoogle Scholar
  59. Neiman M, Meirmans S et al (2009) What can asexual lineage age tell us about the maintenance of sex? Ann NY Acad Sci 1168:185–200PubMedCrossRefGoogle Scholar
  60. Omilian AR, Cristescu ME et al (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 49:18638–18643CrossRefGoogle Scholar
  61. Opperman CH, Bird DM et al (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 39:14802–14807CrossRefGoogle Scholar
  62. Palmer SC, Norton RA (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Exp Appl Acarol 1:67–81CrossRefGoogle Scholar
  63. Regier JC, Shultz JW et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 7284:1079–1083CrossRefGoogle Scholar
  64. Resnick MA (1976) The repair of double-strand breaks in DNA: a model involving recombination. J Theor Biol 1:97–106CrossRefGoogle Scholar
  65. Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387/388:321–326CrossRefGoogle Scholar
  66. Sasser JN, Carter CC (1985) Overview of the international Meloidogyne project 1975–1984. In: Sasser JN, Carter CC (eds) An advance treatise on Meloidogyne, I: biology and control. North Carolina State University Graphics, Raleigh, pp 19–24Google Scholar
  67. Schaefer I, Domes K et al (2006) No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites (Oribatida, Acari). J Evol Biol 1:184–193CrossRefGoogle Scholar
  68. Schön I, Arkhipova IR (2006) Two families of non-LTR retrotransposons, Syrinx and Daphne, from the Darwinulid ostracod, Darwinula stevensoni. Gene 2:296–307CrossRefGoogle Scholar
  69. Schön I, Martens K (2003) No slave to sex. Proc R Soc Lond B Biol Sci 1517:827–833CrossRefGoogle Scholar
  70. Schön I, Butlin RK et al (1998) Slow molecular evolution in an ancient asexual ostracod. Proc R Soc Lond B Biol Sci 1392:235–242CrossRefGoogle Scholar
  71. Schön I, Rossetti G et al (2009) Darwinulid ostracods: ancient asexual scandals or scandalous gossip? In: Schön I, Martens K, van Dijk P (eds) Lost sex. The Evolutionary Biology of Parthenogenesis Springer, Dordrecht, Heidelberg, London, New York, pp 217–240CrossRefGoogle Scholar
  72. Schurko AM, Logsdon JM Jr (2008) Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays 6:579–589CrossRefGoogle Scholar
  73. Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104Google Scholar
  74. Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 1:49–59CrossRefGoogle Scholar
  75. Small K, Brudno M et al (2007) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 3:R41CrossRefGoogle Scholar
  76. Smith RJ, Kamiya T et al (2006) Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda: Crustacea). Proc Biol Sci 1593:1569–1578CrossRefGoogle Scholar
  77. Stein LD, Bao Z et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 2:E45Google Scholar
  78. Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An advance treatise on Meloidogyne, 1. North Carolina State University Graphics, Raleigh, pp 113–126Google Scholar
  79. Van der Beek JG, Los JA et al (1998) Cytology of parthenogenesis of five Meloidogyne species. Fundam Appl Nematol 4:393–399Google Scholar
  80. Van Doninck K, Schön I et al (2002) A general purpose genotype in an ancient asexual. Oecologia 132(2):205–212CrossRefGoogle Scholar
  81. Van Doninck K, Schön I et al (2003) Ecological strategies in the ancient asexual animal group Darwinulidae (Crustacea, Ostracoda). Freshw Biol 8:1285–1294CrossRefGoogle Scholar
  82. Van Doninck K, Mandigo ML et al (2009) Phylogenomics of unusual histone H2A variants in bdelloid rotifers. PLoS Genet 3:e1000401CrossRefGoogle Scholar
  83. Velázquez-Rojas CA, Santos-Medrano GE et al (2002) Sexual reproductive biology of Platyias quadricornis (Rotifera: Monogononta). Int Rev Hydrobiol 1:97–105CrossRefGoogle Scholar
  84. Vinson JP, Jaffe DB et al (2005) Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res 8:1127–1135CrossRefGoogle Scholar
  85. Vrijenhoek RC, Parker ED Jr (2009) Geographical parthenogenesis: general purpose genotypes and frozen niche variation. In: Schön I, Martens K, van Dijk P (eds) Lost sex. The Evolutionary Biology of Parthenogenesis Springer, Dordrecht, Heidelberg, London, New York, pp 99–131CrossRefGoogle Scholar
  86. Waggoner BM, Poinar GO (1993) Fossil habrotrochid rotifers in Dominican amber. Experientia 4:354–357CrossRefGoogle Scholar
  87. Weismann A (1886) Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Verlag von Gustav Fischer, JenaCrossRefGoogle Scholar
  88. Wilson CG, Sherman PW (2010) Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 5965:574–576CrossRefGoogle Scholar
  89. Wolfe K (2000) Robustness – it’s not where you think it is. Nat Genet 1:3–4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Etienne G. J. Danchin
    • 1
  • Jean-François Flot
    • 2
  • Laetitia Perfus-Barbeoch
    • 1
  • Karine Van Doninck
    • 2
  1. 1.INRA, CNRS, Université de Nice-Sophia Antipolis, UMR 1301Sophia-Antipolis CedexFrance
  2. 2.University of Namur (FUNDP), Unit of Research in Organism Biology (URBO)NamurBelgium

Personalised recommendations