Efficient Reductions for Non-signaling Cryptographic Primitives

  • Nico Döttling
  • Daniel Kraschewski
  • Jörn Müller-Quade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6673)


Tamper-proof devices, especially one-time memories (OTMs), are very powerful primitives. They can, e.g., implement one-time programs, i.e. circuits that can be evaluated only once. Furthermore they exhibit a non-signaling nature: The issuer of the device cannot tell whether the receiver interacted with the device. However, due to this non-signaling property, it is non-trivial to obtain protocols with a clear defined end from such devices. The main contribution of this paper is a significant improvement of previous reductions from oblivious transfer to OTMs. The most extreme primitive with respect to non-signaling is the so called non-local box (NL-Box), where neither the sender nor the receiver get to know if the respective other party has interacted with the NL-Box. We show that OTMs can securely be implemented from NL-Boxes. To the best of our knowledge this is the first protocol to cancel the non-signaling property of an NL-Box for exactly one party.


Statistical Security Efficient Reductions One-Time Memories Non-local Boxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCS96]
    Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes. IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BCU+06]
    Buhrman, H., Christandl, M., Unger, F., Wehner, S., Winter, A.: Implications of superstrong nonlocality for cryptography. Proceedings of The Royal Society A 462, 1919–1932 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  4. [CC06]
    Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [CCG+07]
    Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [CDG+05]
    Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Martí-Farré, J., Padró, C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [EGL85]
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985), doi:10.1145/3812.3818MathSciNetCrossRefzbMATHGoogle Scholar
  8. [GI05]
    Guruswami, V., Indyk, P.: Linear time encodable/decodable codes with nearoptimal rate. IEEE Transactions on Information Theory 51, 3393–3400 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [GIS+10]
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. [GKR08]
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. [PR94]
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of Physics 24(3), 379–385 (1994)MathSciNetCrossRefGoogle Scholar
  12. [Rab81]
    Rabin, M.O.: How to exchange secrets by oblivious transfer. technical report tr-81. Technical report, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  13. [SGP06]
    Short, A.J., Gisin, N., Popescu, S.: The physics of no-bit-commitment: Generalized quantum non-locality versus oblivious transfer. Quantum Information Processing 5(2), 131–138 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [SS96]
    Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions on Information Theory 42, 1710–1722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [WW05]
    Wolf, S., Wullschleger, J.: Oblivious transfer and quantum non-locality. In: Proceedings of International Symposium on Information Theory, ISIT 2005, pp. 1745–1748 (September 2005)Google Scholar
  16. [Zém01]
    Zémor, G.: On expander codes. IEEE Transactions on Information Theory 47(2), 835–837 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nico Döttling
    • 1
  • Daniel Kraschewski
    • 1
  • Jörn Müller-Quade
    • 1
  1. 1.Institute of Cryptography and Security, Faculty of InformaticsKarlsruhe Institute of TechnologyGermany

Personalised recommendations